最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

栏目: IT技术 · 发布时间: 4年前

内容简介:加入极市专业CV交流群,与同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注编译|极市平台

加入极市专业CV交流群,与  1 0000+来自港科大、北大、清华、中科院、CMU、腾讯、百度  等名校名企视觉开发者互动交流!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注  极市平台  公众号  , 回复  加群, 立刻申请入群~

编译|极市平台

1. star:9819|Weakly Supervised Disentanglement with Guarantees(弱监督学习)

论文:https://arxiv.org/pdf/1910.09772v2.pdf

代码:https://github.com/google-research/google-research/tree/master/weak_disentangle

2. star:9819|Measuring Compositional Generalization: A Comprehensive Method on Realistic Data

论文:https://arxiv.org/pdf/1912.09713v1.pdf

代码:https://github.com/google-research/google-research/tree/master/cfq

3. star:9819|Meta-Learning without Memorization(元学习/小样本图像分类)

论文:https://arxiv.org/pdf/1912.03820v3.pdf

代码:https://github.com/google-research/google-research/tree/master/meta_learning_without_memorization

4. star:4977|U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation(图像翻译/无监督)

论文:https://arxiv.org/pdf/1907.10830v4.pdf

代码:https://github.com/taki0112/UGATIT

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

5. star:2106|On the Variance of the Adaptive Learning Rate and Beyond

论文:https://arxiv.org/pdf/1908.03265v3.pdf

代码:https://github.com/LiyuanLucasLiu/RAdam

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

6. star:1469|DiffTaichi: Differentiable Programming for Physical Simulation

论文:https://arxiv.org/pdf/1910.00935v3.pdf

代码:https://github.com/yuanming-hu/difftaichi

7. star:1018|Generative Models for Effective ML on Private, Decentralized Datasets

论文:https://arxiv.org/pdf/1911.06679v2.pdf

代码:https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/gans 最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

8. star:963|Behaviour Suite for Reinforcement Learning(强化学习)

论文:https://arxiv.org/pdf/1908.03568v3.pdf

代码:https://github.com/deepmind/bsuite

9. star:534|Contrastive Representation Distillation(知识蒸馏)

论文:https://arxiv.org/pdf/1910.10699v2.pdf

代码:https://github.com/HobbitLong/RepDistiller 最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

10. star:516|On the Relationship between Self-Attention and Convolutional Layers(注意力机制)

论文:https://arxiv.org/pdf/1911.03584v2.pdf

代码:https://github.com/epfml/attention-cnn

11. star:469|AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

论文:https://arxiv.org/pdf/1912.02781v2.pdf

代码:https://github.com/rwightman/pytorch-image-models

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

12. star:443|NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search(神经网络架构搜索)

论文:https://arxiv.org/pdf/2001.00326v2.pdf

代码:https://github.com/D-X-Y/NAS-Projects

13. star:393|Once for All: Train One Network and Specialize it for Efficient Deployment(神经网络训练)

论文:https://openreview.net/pdf?id=HylxE1HKwS

代码:https://github.com/mit-han-lab/once-for-all

14. star:246|BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning(神经网络训练)

论文:https://arxiv.org/pdf/2002.06715v2.pdf

代码:https://github.com/google/edward2

15. star:243|FasterSeg: Searching for Faster Real-time Semantic Segmentation(语义分割)

论文:https://arxiv.org/pdf/1912.10917v2.pdf

代码:https://github.com/TAMU-VITA/FasterSeg 最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

16. star:213|Contrastive Learning of Structured World Models

论文:https://arxiv.org/pdf/1911.12247v2.pdf

代码:https://github.com/tkipf/c-swm 最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

17. star:191|Real or Not Real, that is the Question(GAN)

论文:https://arxiv.org/pdf/2002.05512v1.pdf

代码:https://github.com/kam1107/RealnessGAN

18. star:186|Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving(3D目标检测)

论文:https://arxiv.org/pdf/1906.06310v3.pdf

代码:https://github.com/mileyan/Pseudo_Lidar_V2

19. star:182|Learning to Explore using Active Neural SLAM(三维SLAM)

论文:https://arxiv.org/pdf/2004.05155v1.pdf

代码:https://github.com/devendrachaplot/Neural-SLAM

20. star:175|Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification(行人重识别/无监督)

论文:https://arxiv.org/pdf/2001.01526v2.pdf

代码:https://github.com/yxgeee/MMT

21. star:132|AtomNAS: Fine-Grained End-to-End Neural Architecture Search(神经网络架构搜索)

论文:https://arxiv.org/pdf/1912.09640v2.pdf

代码:https://github.com/meijieru/AtomNAS

22. star:128|Strategies for Pre-training Graph Neural Networks(神经网络训练)

论文:https://arxiv.org/pdf/1905.12265v3.pdf

代码:https://github.com/snap-stanford/pretrain-gnns/

23. star117|Towards Stabilizing Batch Statistics in Backward Propagation of Batch Normalization(归一化)

论文:https://arxiv.org/pdf/2001.06838v2.pdf

代码:https://github.com/megvii-model/MABN

24. star:107|DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

论文:https://arxiv.org/pdf/1907.10903v4.pdf

代码:https://github.com/DropEdge/DropEdge

25. star:107|Neural Arithmetic Units

论文:https://arxiv.org/pdf/2001.05016v1.pdf

代码:https://github.com/AndreasMadsen/stable-nalu

26. star:106|Semantically-Guided Representation Learning for Self-Supervised Monocular Depth(单目深度估计)

论文:https://arxiv.org/pdf/2002.12319v1.pdf

代码:https://github.com/TRI-ML/packnet-sfm

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

27. star:100|Composition-based Multi-Relational Graph Convolutional Networks

论文:https://arxiv.org/pdf/1911.03082v2.pdf

代码:https://github.com/malllabiisc/CompGCN

28. star:93|Deformable Kernels: Adapting Effective Receptive Fields for Object Deformation(图像分割/目标检测)

论文:https://arxiv.org/pdf/1910.02940v2.pdf

代码:https://github.com/hangg7/deformable-kernels/

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

29. star:80|NAS evaluation is frustratingly hard(神经网络架构搜索)

论文:https://arxiv.org/pdf/1912.12522v3.pdf

代码:https://github.com/antoyang/NAS-Benchmark

30. star:74|Understanding and Robustifying Differentiable Architecture Search(图像分类)

论文:https://arxiv.org/pdf/1909.09656v2.pdf

代码:https://github.com/automl/RobustDARTS

31. star:72|Fast Neural Network Adaptation via Parameter Remapping and Architecture Search(图像分类/目标检测/语义分割)

论文:https://arxiv.org/pdf/2001.02525v2.pdf

代码:https://github.com/JaminFong/FNA

32. star:72|Capsules with Inverted Dot-Product Attention Routing(图像分类)

论文:https://arxiv.org/pdf/2002.04764v2.pdf

代码:https://github.com/apple/ml-capsules-inverted-attention-routing

33. star:53|Deep Semi-Supervised Anomaly Detection(异常检测)

论文:https://arxiv.org/pdf/1906.02694v2.pdf

代码:https://arxiv.org/pdf/1906.02694v2.pdf

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

34. star:51|Network Deconvolution(图像分类)

论文:https://arxiv.org/pdf/1905.11926v4.pdf

代码:https://github.com/deconvolutionpaper/deconvolution

35. star:49|Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning(图像分类)

论文:https://arxiv.org/pdf/2002.06470v1.pdf

代码:https://github.com/bayesgroup/pytorch-ensembles

36. star:36|A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning(图像分类)

论文:https://arxiv.org/pdf/2001.00689v2.pdf

代码:https://github.com/soochan-lee/CN-DPM

37. star:33|Empirical Bayes Transductive Meta-Learning with Synthetic Gradients(小样本图像分类/元学习)

论文:https://openreview.net/pdf?id=Hkg-xgrYvH

代码:https://github.com/hushell/sib_meta_learn

38. star:32|Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings(知识图谱)

论文:https://arxiv.org/pdf/2002.05969v2.pdf

代码:https://github.com/hyren/query2box

39. star:27|Kaleidoscope: An Efficient, Learnable Representation For All Structured Linear Maps(图像分类)

论文:https://openreview.net/pdf?id=BkgrBgSYDS

代码:https://github.com/HazyResearch/learning-circuits

40. star:22|Fooling Detection Alone is Not Enough: Adversarial Attack against Multiple Object Tracking(多目标跟踪)

论文:https://openreview.net/pdf?id=rJl31TNYPr

代码:https://github.com/anonymousjack/hijacking

极市平台 公众号后台回复 ICLR2020 ,即可获得上述所有论文的打包下载链接。

参考:https://paperswithcode.com/conference/iclr-2020-1/official

本文为极市平台整理报道,转载请联系本公众号获得授权。

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

△长按关注极市平台,获取 最新CV干货

最高一万星!Github标星最多的40篇ICLR2020计算机视觉开源论文合集

觉得有用麻烦给个在看啦~   


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

敏捷教练

敏捷教练

[英] Rachel Davies、[英] Liz Sedley / 徐毅、袁店明 / 清华大学出版社 / 2013-7 / 49.00元

《敏捷教练:如何打造优秀的敏捷团队》取材于国际知名敏捷教练的真实经历,展示了他们在辅导团队进行敏捷实践过程中所积累的辅导技巧,凝聚着他们在对敏捷辅导的真知灼见,每章还针对特定主题总结了在转型过程中教练和团队可能面对的障碍及其应对方案。 《敏捷教练:如何打造优秀的敏捷团队》具有较强的实用性和指导性,适合项目经理、技术总监和敏捷团队的所有成员阅读与参考。一起来看看 《敏捷教练》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

随机密码生成器
随机密码生成器

多种字符组合密码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具