内容简介:目标检测 | Grid R-CNN 升级版,更快也更好!出自商汤
我爱计算机视觉 标星,更快获取CVML新技术
目标检测 | Grid R-CNN 升级版,更快也更好!出自商汤
Grid R-CNN Plus: Faster and Better
Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, Junjie Yan
https://arxiv.org/abs/1906.05688v1
https://github.com/STVIR/Grid-R-CNN
相关解读:
使用语音数据预测说话人手势
Learning Individual Styles of Conversational Gesture
Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, Andrew Owens, Jitendra Malik
https://arxiv.org/abs/1906.04160v1
http://people.eecs.berkeley.edu/~shiry/speech2gesture
相关解读:
CVPR 2019
视频识别 | 融合局部与全局信心的时空表示学习
Learning Spatio-Temporal Representation with Local and Global Diffusion
Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xinmei Tian, Tao Mei
https://arxiv.org/abs/1906.05571v1
https://github.com/ZhaofanQiu/local-and-global-diffusion-networks
网络训练正则化 | 数据驱动的正则化方法
CoopSubNet: Cooperating Subnetwork for Data-Driven Regularization of Deep Networks under Limited Training Budgets
Riddhish Bhalodia, Shireen Elhabian, Ladislav Kavan, Ross Whitaker
https://arxiv.org/abs/1906.05441v1
https://github.com/riddhishb/CoopSubNet
多视图学习 | 目标分类 | 对比多视图编码
Contrastive Multiview Coding
Yonglong Tian, Dilip Krishnan, Phillip Isola
https://arxiv.org/abs/1906.05849v1
http://github.com/HobbitLong/CMC/
CVPR Workshop on Visual Odometry & Computer Vision Applications Based on Location Clues (VOCVALC), 2019
通过结构和语义信息的非监督深度和自运动学习
Unsupervised Monocular Depth and Ego-motion Learning with Structure and Semantics
Vincent Casser, Soeren Pirk, Reza Mahjourian, Anelia Angelova
https://arxiv.org/abs/1906.05717v1
https://sites.google.com/corp/view/struct2depth
iProStruct2D: Identifying protein structural classes by deep learning via 2D representations
通过2D表示深度学习识别蛋白质结构类别
Loris Nanni, Alessandra Lumini, Federica Pasquali, Sheryl Brahnam
https://arxiv.org/abs/1906.04407v1
https://github.com/LorisNanni
快速精确的多尺度端到端去雾网络
FAMED-Net: A Fast and Accurate Multi-scale End-to-end Dehazing Network
Jing Zhang, Dacheng Tao
https://arxiv.org/abs/1906.04334v1
(代码将开源,还未公布地址)
对抗学习 | 子空间攻击,清华、Intel
Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks
Ziang Yan, Yiwen Guo, Changshui Zhang
https://arxiv.org/abs/1906.04392v1
利用全局上下文信息进行人体姿态估计,Intel
Global Context for Convolutional Pose Machines
Daniil Osokin
https://arxiv.org/abs/1906.04104v1
https://github.com/opencv/openvino_training_extensions/tree/develop/pytorch_toolkit/human_pose_estimation
ICML 2019
自监督学习
Self-Supervised Exploration via Disagreement
Deepak Pathak, Dhiraj Gandhi, Abhinav Gupta
https://arxiv.org/abs/1906.04161v1
https://pathak22.github.io/exploration-by-disagreement/
目标检测模型蒸馏
Distilling Object Detectors with Fine-grained Feature Imitation
Tao Wang, Li Yuan, Xiaopeng Zhang, Jiashi Feng
https://arxiv.org/abs/1906.03609v1
https://github.com/twangnh/Distilling-Object-Detectors
视频中镜头过度的快速检测
TransNet: A deep network for fast detection of common shot transitions
Tomáš Souček, Jaroslav Moravec, Jakub Lokoč
https://arxiv.org/abs/1906.03363v1
https://github.com/soCzech/TransNet
维度卷积用于高效网络设计
DiCENet: Dimension-wise Convolutions for Efficient Networks
Sachin Mehta, Hannaneh Hajishirzi, Mohammad Rastegari
https://arxiv.org/abs/1906.03516v1
https://github.com/sacmehta/EdgeNets
文本视频信息嵌入
HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips
Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, Josef Sivic
https://arxiv.org/abs/1906.03327v1
http://www.di.ens.fr/willow/research/howto100m/
基于组合层的GAN模型
How to make a pizza: Learning a compositional layer-based GAN model
Dim P. Papadopoulos, Youssef Tamaazousti, Ferda Ofli, Ingmar Weber, Antonio Torralba
https://arxiv.org/abs/1906.02839v1
http://pizzagan.csail.mit.edu/
医学图像分割 | 多尺度引导注意力模型
Multi-scale guided attention for medical image segmentation
Ashish Sinha, Jose Dolz
https://arxiv.org/abs/1906.02849v1
https://github.com/sinAshish/Multi-Scale-Attention
A deep learning approach for automated detection of geographic atrophy from color fundus photographs 医学图像处理识别 | 眼底病变检测
Tiarnan D. Keenan, Shazia Dharssi, Yifan Peng, Qingyu Chen, Elvira Agrón, Wai T. Wong, Zhiyong Lu, Emily Y. Chew
https://arxiv.org/abs/1906.03153v1
https://github.com/ncbi-nlp/DeepSeeNet
IEEE ITSC 2019
变道视频中风险动作识别
Risky Action Recognition in Lane Change Video Clips using Deep Spatiotemporal Networks with Segmentation Mask Transfer
Ekim Yurtsever, Yongkang Liu, Jacob Lambert, Chiyomi Miyajima, Eijiro Takeuchi, Kazuya Takeda, John H. L. Hansen
https://arxiv.org/abs/1906.02859v1
https://github.com/Ekim-Yurtsever/DeepTL-Lane-Change-Classification
图像聚类自动编码器
An Image Clustering Auto-Encoder Based on Predefined Evenly-Distributed Class Centroids and MMD Distance
Qiuyu Zhu, Zhengyong Wang
https://arxiv.org/abs/1906.03905v1
https://github.com/yuanbao888/Clustering
加群交流
关注计算机视觉与机器学习技术,欢迎加入52CV群,扫码添加CV君拉你入群,
( 请务必注明:52CV )
喜欢在QQ交流的童鞋,可以加52CV官方 QQ群 : 702781905 。
(不会时时在线,如果没能及时通过验证还请见谅)
长按关注 我爱计算机视觉
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 开源周报第44期:归去来兮,芳草萋萋
- 开源周报:Hyperapp领风骚,Python带你跳一跳
- 开源周报第45期:努力尽今夕,少年犹可夸
- 开源周报第46期:倏忽春风一面,须臾热闹一年
- CV Code | 计算机视觉开源周报 20190505期
- CV Code | 计算机视觉开源周报 20190601期
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
The Facebook Effect
David Kirkpatrick / Simon & Schuster / 2010-6-8 / USD 26.00
《Facebook 效应》的作者近距离地采访了与Facebook相关的人士,其中包括Facebook的创始人、员工、投资人、意向投资人以及合作伙伴,加起来超过了130人。这是真切详实的访谈,更是超级精彩的故事。作者以其细腻的笔触,精巧的叙事结构,解密了Facebook如何从哈佛的宿舍里萌发,创始人的内讧,权力之争,如何放弃华盛顿邮报的投资,怎样争取到第一个广告客户,而第一轮融资又如何获得一亿美元的......一起来看看 《The Facebook Effect》 这本书的介绍吧!