围观:基于事件机制的内部解耦之心路历程

栏目: IT技术 · 发布时间: 4年前

每篇文章都有属于它自己的故事,没有故事的文章是没有灵魂的文章。而我就是这个灵魂摆渡人。

主人公张某某,这边不方便透露姓名,就叫小张吧。小张在一家小型的互联网创业团队中就职。

职位是 Java 后端开发,所以整体和业务代码打交道在所难免。

之前有个搜索相关的需求,而且数量量也算比较大,就采用了 ElasticSearch 来做搜索。第一版由于时间比较赶,做的比较粗糙。越到后面发现代码越难写下去了,主要是在更新索引数据的场景没处理好,才有了今天的故事。

基础入门

Spring Event

Spring 的事件就是观察者设计模式,一个任务结束后需要通知任务进行下一步的操作,就可以使用事件来驱动。

在 Spring 中使用事件机制的步骤如下:

  • 自定义事件对象,继承 ApplicationEvent

  • 自定义事件监听器,实现 ApplicationListener 或者通过 @EventListener 注解到方法上实现监听

  • 自定义发布者,通过 applicationContext.publishEvent()发布事件

Spring Event 在很多开源框架中都有使用案例,比如 Spring Cloud 中的 Eureka 里面就有使用

event 包

围观:基于事件机制的内部解耦之心路历程

定义 Event

围观:基于事件机制的内部解耦之心路历程

发布 Event

围观:基于事件机制的内部解耦之心路历程

Guava EventBus

EventBus 是 Guava 的事件处理机制,在使用层面和 Spring Event 差不多。这里不做过多讲解,今天主要讲 Spring Event。

业务背景

所有的数据都会有一个定时任务去同步数据到 ElasticSearch 中,业务中直接从 ElasticSearch 查询数据返回给调用方。

之所以把所有数据都存入 ElasticSearch 是为了方便,如果只存储搜索的字段,那么搜索出来后就还需要去数据库查询其他信息进行组装。

就是由于所有数据都会存储 ElasticSearch 中,所以当这些数据发生变更的时候我们需要去刷新 ElasticSearch 中的数据,这个就是我们今天文章的核心背景。

假设我们 ElasticSearch 中的数据是文章信息,也就是我们经常看的技术文章,这个文章中存储了访问量,点赞量,评论量等信息。

当这些动作发生的时候,都需要去更新 ElasticSearch 的数据才行,我们默认的操作都是更新数据库中的数据,ElasticSearch 是由定时任务去同步的,同步会有周期,做不到毫秒别更新。

实现方案-倔强青铜

倔强青铜就是在每个会涉及到数据变更的地方,去手动调用代码进行数据的刷新操作,弊端在于每个地方都要去调用,这还是简单的场景,有复杂的业务场景,一个业务操作可能会涉及到很多数据的刷新,也就是需要调用很多次,模拟代码如下:

// 浏览

public void visit() {

articleIndexService.reIndex(articleId);

XXXIndexService.reIndex(articleId);

........

}


// 评论

public void comment() {

articleIndexService.reIndex(articleId);

}

实现方案-秩序白银

倔强青铜的弊端在于不解耦,而且是同步调用,如果在事务中会加长事务的时间。所以我们需要一个异步的方案来执行重建索引的逻辑。

经过大家激烈的讨论,而项目也是以 Spring Boot 为主,所以选择了 Spring Event 来作为异步方案。

定义一个重建文章索引的 Event,代码如下:

public class ArticleReIndexEvent extends ApplicationEvent {

private String id;


public ArticleReIndexEvent(Object source, String id) {

super(source);

this.id = id;

}


public String getId() {

return id;

}


}

然后写一个 EventListener 来监听事件,进行业务逻辑处理,代码如下:

@Component

public class MyEventListener {


@EventListener

public void onEvent(ArticleReIndexEvent event) {

System.out.println(event.getId());

}

}

使用的地方只需要发布一个 Event 就可以,这个动作默认是同步的,如果我们想让这个操作不会阻塞,变成异步只需要在@EventListener 上面再增加一个@Async 注解。

// 浏览

public void visit() {

applicationContext.publishEvent(new ArticleReIndexEvent(this, articleId));

applicationContext.publishEvent(new XXXReIndexEvent(this, articleId));

}


// 评论

public void comment() {

applicationContext.publishEvent(new ArticleReIndexEvent(this, articleId));

}

实现方案-荣耀黄金

秩序白银的方案在代码层面确实解耦了,但是使用者发布事件需要关注的点太多了,也就是我改了某个表的数据,我得知道有哪些索引会用到这张表的数据,我得把这些相关的事件都发送出去,这样数据才会异步进行刷新。

当业务复杂后或者有新来的同事,不是那么的了解业务,压根不可能知道说我改了这个数据对其他那些索引有影响,所以这个方案还是有优化的空间。

荣耀黄金的方案是将所有的事件都统一为一个,然后在事件里加属性来区分修改的数据是哪里的。每个数据需要同步变更的索引都有自己的监听器,去监听这个统一的事件,这样对于发布者来说我只需要发送一个事件告诉你,我这边改数据了,你要不要消费,要不要更新索引我并不关心。

定义一个数据表发生修改的事件,代码如下:

public class TableUpdateEvent extends ApplicationEvent {

private String table;

private String id;


public TableUpdateEvent(Object source, String id, String table) {

super(source);

this.id = id;

this.table = table;

}


public String getId() {

return id;

}


public String getTable() {

return table;

}


}

然后每个索引都需要消费这个事件,只需要关注这个索引中数据的来源表有没有变动,如果有变动则去刷新索引。

比如索引 A 的数据都是 article 表中过来的,所以只要是 article 表中的数据发生了变更,索引 A 都要做对应的处理,所以索引 A 的监听器只需要关注 article 表有没有修改即可。

@Component

public class MyEventListener {


private List<String> consumerTables = Arrays.asList("article");


@Async

@EventListener

public void onEvent(TableUpdateEvent event) {

System.out.println(event.getId() + "\t" + event.getTable());

if (consumerTables.contains(event.getTable())) {

System.out.println("消费自己关注的表数据变动,然后处理。。。");

}

}


}

比如索引 B 的数据是从 comment 和 comment_reply 两个表中过来的,所以只要是 comment 和 comment_reply 两个表的数据发生了变更,索引 B 都需要做对应的处理,所以索引 B 的监听器只需要关注 comment 和 comment_reply 两个表有没有修改即可。

@Component

public class MyEventListener2 {


private List<String> consumerTables = Arrays.asList("comment", "comment_replay");


@Async

@EventListener

public void onEvent(TableUpdateEvent event) {

System.out.println(event.getId() + "\t" + event.getTable());

if (consumerTables.contains(event.getTable())) {

System.out.println("消费自己关注的表数据变动,然后处理。。。");

}

}


}

实现方案-尊贵铂金

荣耀黄金的方案已经很完美了,代码解耦不说,使用者关注点也少了,不容易出错。

但还有一个致命的问题就是所有涉及到业务修改的方法中,得手动往外发送一个事件,从代码解耦的场景来说还残留了一点瑕疵,至少还是有那么一行代码来发送事件。

尊贵铂金的方案将完全解耦,不需要写代码的时候手动去发送事件。我们将通过订阅 MySql 的 binlog 来统一发送事件。

binlog 是 MySQL 数据库的二进制日志,用于记录用户对数据库操作的 SQL 语句信息,MySQL 的主从同步也是基于 binlog 来实现的,对于我们这种数据异构的场景再合适不过了。

binlog 订阅的方式有很多种,开源的框架一般都是用 canal 来实现。

canal:https://github.com/alibaba/canal

如果你买的云数据库,像阿里云就有 dts 数据订阅服务,跟 canal 一样。

之后的方案图如下:

围观:基于事件机制的内部解耦之心路历程

实现方案-永恒钻石

没有什么方案和架构是永恒的,跟着业务的变更而演进,符合当前业务的需求才是王道。越后面考虑的东西越多,毕竟最后是要升级到最强王者的,哈哈。

关于作者 尹吉欢,简单的技术爱好者,《Spring Cloud微服务-全栈技术与案例解析》, 《Spring Cloud微服务 入门 实战与进阶》作者。公众号  猿天地  发起人。

热文推荐

为我开发的API添加华丽的外衣

技术人的副业之道

RedisTemplate:我不背锅,是你用错了

得亏了它,我才把潜藏那么深的Bug挖出来

惊讶! 缓存刚Put再Get居然获取不到?

好机会,我要帮女同事解决Maven冲突问题

围观:基于事件机制的内部解耦之心路历程 围观:基于事件机制的内部解耦之心路历程

围观:基于事件机制的内部解耦之心路历程

如有收获,点个在看,诚挚感谢


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python金融衍生品大数据分析:建模、模拟、校准与对冲

Python金融衍生品大数据分析:建模、模拟、校准与对冲

【德】Yves Hilpisch(伊夫·希尔皮斯科) / 蔡立耑 / 电子工业出版社 / 2017-8 / 99.00

Python 在衍生工具分析领域占据重要地位,使机构能够快速、有效地提供定价、交易及风险管理的结果。《Python金融衍生品大数据分析:建模、模拟、校准与对冲》精心介绍了有效定价期权的四个领域:基于巿场定价的过程、完善的巿场模型、数值方法及技术。书中的内容分为三个部分。第一部分着眼于影响股指期权价值的风险,以及股票和利率的相关实证发现。第二部分包括套利定价理论、离散及连续时间的风险中性定价,并介绍......一起来看看 《Python金融衍生品大数据分析:建模、模拟、校准与对冲》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具