内容简介:开箱即用,5行代码打造无限宽神经网络模型Neural Tangents 是一个高级神经网络 API,可用于指定复杂、分层的神经网络,在 CPU/GPU/TPU 上开箱即用。该库用 JAX编写,既可以构建有限宽度神经网络,亦可轻松创建和训练无限宽度神经网络。
开箱即用,5行代码打造无限宽神经网络模型
Neural Tangents 是一个高级神经网络 API,可用于指定复杂、分层的神经网络,在 CPU/GPU/TPU 上开箱即用。
该库用 JAX编写,既可以构建有限宽度神经网络,亦可轻松创建和训练无限宽度神经网络。
有什么用呢?举个例子,你需要训练一个完全连接神经网络。通常,神经网络是随机初始化的,然后采用梯度下降进行训练。
研究人员通过对一组神经网络中不同成员的预测取均值,来提升模型的性能。另外,每个成员预测中的方差可以用来估计不确定性。
如此一来,就需要大量的计算预算。
但当神经网络变得无限宽时,网络集合就可以用高斯过程来描述,其均值和方差可以在整个训练过程中进行计算。
而使用 Neural Tangents ,仅需5行代码,就能完成对无限宽网络集合的构造和训练。
from neural_tangents import predict, stax init_fn, apply_fn, kernel_fn = stax.serial( stax.Dense(2048, W_std=1.5, b_std=0.05), stax.Erf(), stax.Dense(2048, W_std=1.5, b_std=0.05), stax.Erf(), stax.Dense(1, W_std=1.5, b_std=0.05)) y_mean, y_var = predict.gp_inference(kernel_fn, x_train, y_train, x_test, ‘ntk’, diag_reg=1e-4, compute_cov=True)
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 重磅 | DeepMind新神经网络学会关系推理,还击败了人类
- 重磅!Facebook更新PyTorch 1.1,打算跨GPU分割神经网络
- 重磅 | AI 第一高校 CMU 的「神经网络 NLP」课,中英字幕独家上线!
- 谷歌重磅开源新技术:5行代码打造无限宽神经网络模型,帮助“打开ML黑匣子”
- 重磅!谷歌发布 Flutter 2
- Linkis 0.9.1 重磅发布
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。