本文转载自: https://www.cnblogs.com/jietang/p/5983038.html
自从在园子里,发表了两篇如何基于Netty构建RPC服务器的文章:谈谈如何使用Netty开发实现高性能的RPC服务器、Netty实现高性能RPC服务器优化篇之消息序列化 之后,收到了很多同行、园友们热情的反馈和若干个优化建议,于是利用闲暇时间,打算对原来NettyRPC中不合理的模块进行重构,并且增强了一些特性,主要的优化点如下:
- 在原来编码解码器:JDK原生的对象序列化方式、kryo、hessian,新增了:protostuff。
- 优化了NettyRPC服务端的线程池模型,支持LinkedBlockingQueue、ArrayBlockingQueue、SynchronousQueue,并扩展了多个线程池任务处理策略。
- RPC服务启动、注册、卸载支持,通过Spring中自定义的nettyrpc标签进行统一管理。
现在重点整理一下重构思路、经验,记录下来。对应源代码代码,大家可以查看我的开源github:https://github.com/tang-jie/NettyRPC 项目中的NettyRPC 2.0目录。
在最早的NettyRPC消息编解码插件中,我使用的是:JDK原生的对象序列化(ObjectOutputStream/ObjectInputStream)、Kryo、Hessian这三种方式,后续有园友向我提议,可以引入Protostuff序列化方式。经过查阅网络的相关资料,Protostuff基于Google protobuf,但是提供了更多的功能和更简易的用法。原生的protobuff是需要数据结构的预编译过程,需要编写.proto格式的配置文件,再通过protobuf提供的 工具 翻译成目标语言代码,而Protostuff则省略了这个预编译的过程。以下是 Java 主流序列化框架的性能测试结果(图片来自网络):
可以发现,Protostuff序列化确实是一种很高效的序列化框架,相比起其他主流的序列化、反序列化框架,其序列化性能可见一斑。如果用它来进行RPC消息的编码、解码工作,再合适不过了。现在贴出具体的Protostuff序列化编解码器的实现代码。
首先是定义Schema,这个是因为Protostuff-Runtime实现了无需预编译对java bean进行protobuf序列化/反序列化的能力。我们可以把运行时的Schema缓存起来,提高序列化性能。具体实现类SchemaCache代码如下:
package com.newlandframework.rpc.serialize.protostuff; import com.dyuproject.protostuff.Schema; import com.dyuproject.protostuff.runtime.RuntimeSchema; import com.google.common.cache.Cache; import com.google.common.cache.CacheBuilder; import java.util.concurrent.ExecutionException; import java.util.concurrent.Callable; import java.util.concurrent.TimeUnit; /** * @author tangjie<https://github.com/tang-jie> * @filename:SchemaCache.java * @description:SchemaCache功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class SchemaCache { private static class SchemaCacheHolder { private static SchemaCache cache = new SchemaCache(); } public static SchemaCache getInstance() { return SchemaCacheHolder.cache; } private Cache<Class<?>, Schema<?>> cache = CacheBuilder.newBuilder() .maximumSize(1024).expireAfterWrite(1, TimeUnit.HOURS) .build(); private Schema<?> get(final Class<?> cls, Cache<Class<?>, Schema<?>> cache) { try { return cache.get(cls, new Callable<RuntimeSchema<?>>() { public RuntimeSchema<?> call() throws Exception { return RuntimeSchema.createFrom(cls); } }); } catch (ExecutionException e) { return null; } } public Schema<?> get(final Class<?> cls) { return get(cls, cache); } }
然后定义真正的Protostuff序列化、反序列化类,它实现了RpcSerialize接口的方法:
package com.newlandframework.rpc.serialize.protostuff; import com.dyuproject.protostuff.LinkedBuffer; import com.dyuproject.protostuff.ProtostuffIOUtil; import com.dyuproject.protostuff.Schema; import java.io.InputStream; import java.io.OutputStream; import com.newlandframework.rpc.model.MessageRequest; import com.newlandframework.rpc.model.MessageResponse; import com.newlandframework.rpc.serialize.RpcSerialize; import org.objenesis.Objenesis; import org.objenesis.ObjenesisStd; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffSerialize.java * @description:ProtostuffSerialize功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffSerialize implements RpcSerialize { private static SchemaCache cachedSchema = SchemaCache.getInstance(); private static Objenesis objenesis = new ObjenesisStd(true); private boolean rpcDirect = false; public boolean isRpcDirect() { return rpcDirect; } public void setRpcDirect(boolean rpcDirect) { this.rpcDirect = rpcDirect; } private static <T> Schema<T> getSchema(Class<T> cls) { return (Schema<T>) cachedSchema.get(cls); } public Object deserialize(InputStream input) { try { Class cls = isRpcDirect() ? MessageRequest.class : MessageResponse.class; Object message = (Object) objenesis.newInstance(cls); Schema<Object> schema = getSchema(cls); ProtostuffIOUtil.mergeFrom(input, message, schema); return message; } catch (Exception e) { throw new IllegalStateException(e.getMessage(), e); } } public void serialize(OutputStream output, Object object) { Class cls = (Class) object.getClass(); LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); try { Schema schema = getSchema(cls); ProtostuffIOUtil.writeTo(output, object, schema, buffer); } catch (Exception e) { throw new IllegalStateException(e.getMessage(), e); } finally { buffer.clear(); } } }
同样为了提高Protostuff序列化/反序列化类的利用效率,我们可以对其进行池化处理,而不要频繁的创建、销毁对象。现在给出Protostuff池化处理类:ProtostuffSerializeFactory、ProtostuffSerializePool的实现代码:
package com.newlandframework.rpc.serialize.protostuff; import org.apache.commons.pool2.BasePooledObjectFactory; import org.apache.commons.pool2.PooledObject; import org.apache.commons.pool2.impl.DefaultPooledObject; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffSerializeFactory.java * @description:ProtostuffSerializeFactory功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffSerializeFactory extends BasePooledObjectFactory<ProtostuffSerialize> { public ProtostuffSerialize create() throws Exception { return createProtostuff(); } public PooledObject<ProtostuffSerialize> wrap(ProtostuffSerialize hessian) { return new DefaultPooledObject<ProtostuffSerialize>(hessian); } private ProtostuffSerialize createProtostuff() { return new ProtostuffSerialize(); } }
package com.newlandframework.rpc.serialize.protostuff; import org.apache.commons.pool2.impl.GenericObjectPool; import org.apache.commons.pool2.impl.GenericObjectPoolConfig; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffSerializePool.java * @description:ProtostuffSerializePool功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffSerializePool { private GenericObjectPool<ProtostuffSerialize> ProtostuffPool; volatile private static ProtostuffSerializePool poolFactory = null; private ProtostuffSerializePool() { ProtostuffPool = new GenericObjectPool<ProtostuffSerialize>(new ProtostuffSerializeFactory()); } public static ProtostuffSerializePool getProtostuffPoolInstance() { if (poolFactory == null) { synchronized (ProtostuffSerializePool.class) { if (poolFactory == null) { poolFactory = new ProtostuffSerializePool(); } } } return poolFactory; } public ProtostuffSerializePool(final int maxTotal, final int minIdle, final long maxWaitMillis, final long minEvictableIdleTimeMillis) { ProtostuffPool = new GenericObjectPool<ProtostuffSerialize>(new ProtostuffSerializeFactory()); GenericObjectPoolConfig config = new GenericObjectPoolConfig(); config.setMaxTotal(maxTotal); config.setMinIdle(minIdle); config.setMaxWaitMillis(maxWaitMillis); config.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis); ProtostuffPool.setConfig(config); } public ProtostuffSerialize borrow() { try { return getProtostuffPool().borrowObject(); } catch (final Exception ex) { ex.printStackTrace(); return null; } } public void restore(final ProtostuffSerialize object) { getProtostuffPool().returnObject(object); } public GenericObjectPool<ProtostuffSerialize> getProtostuffPool() { return ProtostuffPool; } }
现在有了Protostuff池化处理类,我们就通过它来实现NettyRPC的编码、解码接口,达到对RPC消息编码、解码的目的。首先是Protostuff方式实现的RPC解码器代码:
package com.newlandframework.rpc.serialize.protostuff; import com.newlandframework.rpc.serialize.MessageCodecUtil; import com.newlandframework.rpc.serialize.MessageDecoder; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffDecoder.java * @description:ProtostuffDecoder功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffDecoder extends MessageDecoder { public ProtostuffDecoder(MessageCodecUtil util) { super(util); } }
然后是Protostuff方式实现的RPC编码器代码:
package com.newlandframework.rpc.serialize.protostuff; import com.newlandframework.rpc.serialize.MessageCodecUtil; import com.newlandframework.rpc.serialize.MessageEncoder; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffEncoder.java * @description:ProtostuffEncoder功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffEncoder extends MessageEncoder { public ProtostuffEncoder(MessageCodecUtil util) { super(util); } }
最后重构出Protostuff方式的RPC编码、解码器工具类ProtostuffCodecUtil的实现代码:
package com.newlandframework.rpc.serialize.protostuff; import com.google.common.io.Closer; import com.newlandframework.rpc.serialize.MessageCodecUtil; import io.netty.buffer.ByteBuf; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffCodecUtil.java * @description:ProtostuffCodecUtil功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffCodecUtil implements MessageCodecUtil { private static Closer closer = Closer.create(); private ProtostuffSerializePool pool = ProtostuffSerializePool.getProtostuffPoolInstance(); private boolean rpcDirect = false; public boolean isRpcDirect() { return rpcDirect; } public void setRpcDirect(boolean rpcDirect) { this.rpcDirect = rpcDirect; } public void encode(final ByteBuf out, final Object message) throws IOException { try { ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); closer.register(byteArrayOutputStream); ProtostuffSerialize protostuffSerialization = pool.borrow(); protostuffSerialization.serialize(byteArrayOutputStream, message); byte[] body = byteArrayOutputStream.toByteArray(); int dataLength = body.length; out.writeInt(dataLength); out.writeBytes(body); pool.restore(protostuffSerialization); } finally { closer.close(); } } public Object decode(byte[] body) throws IOException { try { ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(body); closer.register(byteArrayInputStream); ProtostuffSerialize protostuffSerialization = pool.borrow(); protostuffSerialization.setRpcDirect(rpcDirect); Object obj = protostuffSerialization.deserialize(byteArrayInputStream); pool.restore(protostuffSerialization); return obj; } finally { closer.close(); } } }
这样就使得NettyRPC的消息序列化又多了一种方式,进一步增强了其RPC消息网络传输的能力。
其次是优化了NettyRPC服务端的线程模型,使得RPC消息处理线程池对任务的队列容器的支持更加多样。具体RPC异步处理线程池RpcThreadPool的代码如下:
package com.newlandframework.rpc.parallel; import com.newlandframework.rpc.core.RpcSystemConfig; import com.newlandframework.rpc.parallel.policy.AbortPolicy; import com.newlandframework.rpc.parallel.policy.BlockingPolicy; import com.newlandframework.rpc.parallel.policy.CallerRunsPolicy; import com.newlandframework.rpc.parallel.policy.DiscardedPolicy; import com.newlandframework.rpc.parallel.policy.RejectedPolicy; import com.newlandframework.rpc.parallel.policy.RejectedPolicyType; import java.util.concurrent.Executor; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.RejectedExecutionHandler; /** * @author tangjie<https://github.com/tang-jie> * @filename:RpcThreadPool.java * @description:RpcThreadPool功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class RpcThreadPool { private static RejectedExecutionHandler createPolicy() { RejectedPolicyType rejectedPolicyType = RejectedPolicyType.fromString(System.getProperty(RpcSystemConfig.SystemPropertyThreadPoolRejectedPolicyAttr, "AbortPolicy")); switch (rejectedPolicyType) { case BLOCKING_POLICY: return new BlockingPolicy(); case CALLER_RUNS_POLICY: return new CallerRunsPolicy(); case ABORT_POLICY: return new AbortPolicy(); case REJECTED_POLICY: return new RejectedPolicy(); case DISCARDED_POLICY: return new DiscardedPolicy(); } return null; } private static BlockingQueue<Runnable> createBlockingQueue(int queues) { BlockingQueueType queueType = BlockingQueueType.fromString(System.getProperty(RpcSystemConfig.SystemPropertyThreadPoolQueueNameAttr, "LinkedBlockingQueue")); switch (queueType) { case LINKED_BLOCKING_QUEUE: return new LinkedBlockingQueue<Runnable>(); case ARRAY_BLOCKING_QUEUE: return new ArrayBlockingQueue<Runnable>(RpcSystemConfig.PARALLEL * queues); case SYNCHRONOUS_QUEUE: return new SynchronousQueue<Runnable>(); } return null; } public static Executor getExecutor(int threads, int queues) { String name = "RpcThreadPool"; return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS, createBlockingQueue(queues), new NamedThreadFactory(name, true), createPolicy()); } }
其中创建线程池方法getExecutor是依赖JDK自带的线程ThreadPoolExecutor的实现,参考JDK的帮助文档,可以发现其中的一种ThreadPoolExecutor构造方法重载实现的版本:
参数的具体含义如下:
- corePoolSize是线程池保留大小。
- maximumPoolSize是线程池最大线程大小。
- keepAliveTime是指空闲(idle)线程结束的超时时间。
- unit用来指定keepAliveTime对应的时间单位,诸如:毫秒、秒、分钟、小时、天 等等。
- workQueue用来存放待处理的任务队列。
- handler用来具体指定,当任务队列填满、并且线程池最大线程大小也达到的情形下,线程池的一些应对措施策略。
NettyRPC的线程池支持的任务队列类型主要有以下三种:
- LinkedBlockingQueue:采用链表方式实现的无界任务队列,当然你可以额外指定其容量,使其有界。
- ArrayBlockingQueue:有界的的数组任务队列。
- SynchronousQueue:任务队列的容量固定为1,当客户端提交执行任务过来的时候,有进行阻塞。直到有个处理线程取走这个待执行的任务,否则会一直阻塞下去。
NettyRPC的线程池模型,当遇到线程池也无法处理的情形的时候,具体的应对措施策略主要有:
- AbortPolicy:直接拒绝执行,抛出rejectedExecution异常。
- DiscardedPolicy:从任务队列的头部开始直接丢弃一半的队列元素,为任务队列“减负”。
- CallerRunsPolicy:不抛弃任务,也不抛出异常,而是调用者自己来运行。这个是主要是因为过多的并行请求会加剧系统的负载,线程之间调度操作系统会频繁的进行上下文切换。当遇到线程池满的情况,与其频繁的切换、中断。不如把并行的请求,全部串行化处理,保证尽量少的处理延时,大概是我能想到的Doug Lea的设计初衷吧。
经过详细的介绍了线程池参数的具体内容之后,下面我就详细说一下,NettyRPC的线程池RpcThreadPool的工作流程:
- NettyRPC的线程池收到RPC数据处理请求之后,判断当前活动的线程数小于线程池设置的corePoolSize的大小的时候,会继续生成执行任务。
- 而当达到corePoolSize的大小的时候的时候,这个时候,线程池会把待执行的任务放入任务队列之中。
- 当任务队列也被存满了之后,如果当前活动的线程个数还是小于线程池中maximumPoolSize参数的设置,线程池还会继续分配出任务线程进行救急处理,并且会立马执行。
- 如果达到线程池中maximumPoolSize参数的设置的线程上限,线程池分派出来的救火队也无法处理的时候,线程池就会调用拒绝自保策略RejectedExecutionHandler进行处理。
NettyRPC中默认的线程池设置是把corePoolSize、maximumPoolSize都设置成16,任务队列设置成无界链表构成的阻塞队列。在应用中要根据实际的压力、吞吐量对NettyRPC的线程池参数进行合理的规划。目前NettyRPC暴露了一个JMX接口,JMX是“Java管理扩展的(Java Management Extensions)”的缩写,是一种类似J2EE的规范,这样就可以灵活的扩展系统的监控、管理功能。实时监控RPC服务器线程池任务的执行情况,具体JMX监控度量线程池关键指标代码实现如下:
package com.newlandframework.rpc.parallel.jmx; import org.springframework.jmx.export.annotation.ManagedOperation; import org.springframework.jmx.export.annotation.ManagedResource; /** * @author tangjie<https://github.com/tang-jie> * @filename:ThreadPoolStatus.java * @description:ThreadPoolStatus功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/13 */ @ManagedResource public class ThreadPoolStatus { private int poolSize; private int activeCount; private int corePoolSize; private int maximumPoolSize; private int largestPoolSize; private long taskCount; private long completedTaskCount; @ManagedOperation public int getPoolSize() { return poolSize; } @ManagedOperation public void setPoolSize(int poolSize) { this.poolSize = poolSize; } @ManagedOperation public int getActiveCount() { return activeCount; } @ManagedOperation public void setActiveCount(int activeCount) { this.activeCount = activeCount; } @ManagedOperation public int getCorePoolSize() { return corePoolSize; } @ManagedOperation public void setCorePoolSize(int corePoolSize) { this.corePoolSize = corePoolSize; } @ManagedOperation public int getMaximumPoolSize() { return maximumPoolSize; } @ManagedOperation public void setMaximumPoolSize(int maximumPoolSize) { this.maximumPoolSize = maximumPoolSize; } @ManagedOperation public int getLargestPoolSize() { return largestPoolSize; } @ManagedOperation public void setLargestPoolSize(int largestPoolSize) { this.largestPoolSize = largestPoolSize; } @ManagedOperation public long getTaskCount() { return taskCount; } @ManagedOperation public void setTaskCount(long taskCount) { this.taskCount = taskCount; } @ManagedOperation public long getCompletedTaskCount() { return completedTaskCount; } @ManagedOperation public void setCompletedTaskCount(long completedTaskCount) { this.completedTaskCount = completedTaskCount; } }
线程池状态监控类:ThreadPoolStatus,具体监控的指标如下:
- poolSize:池中的当前线程数
- activeCount:主动执行任务的近似线程数
- corePoolSize:核心线程数
- maximumPoolSize:允许的最大线程数
- largestPoolSize:历史最大的线程数
- taskCount:曾计划执行的近似任务总数
- completedTaskCount:已完成执行的近似任务总数
其中corePoolSize、maximumPoolSize具体含义上文已经详细讲述,这里就不具体展开。
NettyRPC线程池监控JMX接口:ThreadPoolMonitorProvider,JMX通过JNDI-RMI的方式进行远程连接通讯,具体实现方式如下:
package com.newlandframework.rpc.parallel.jmx; import com.newlandframework.rpc.netty.MessageRecvExecutor; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; import org.springframework.context.annotation.DependsOn; import org.springframework.context.annotation.EnableMBeanExport; import org.springframework.jmx.support.ConnectorServerFactoryBean; import org.springframework.jmx.support.MBeanServerConnectionFactoryBean; import org.springframework.jmx.support.MBeanServerFactoryBean; import org.springframework.remoting.rmi.RmiRegistryFactoryBean; import org.apache.commons.lang3.StringUtils; import javax.management.MBeanServerConnection; import javax.management.MalformedObjectNameException; import javax.management.ObjectName; import javax.management.ReflectionException; import javax.management.MBeanException; import javax.management.InstanceNotFoundException; import java.io.IOException; /** * @author tangjie<https://github.com/tang-jie> * @filename:ThreadPoolMonitorProvider.java * @description:ThreadPoolMonitorProvider功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/13 */ @Configuration @EnableMBeanExport @ComponentScan("com.newlandframework.rpc.parallel.jmx") public class ThreadPoolMonitorProvider { public final static String DELIMITER = ":"; public static String url; public static String jmxPoolSizeMethod = "setPoolSize"; public static String jmxActiveCountMethod = "setActiveCount"; public static String jmxCorePoolSizeMethod = "setCorePoolSize"; public static String jmxMaximumPoolSizeMethod = "setMaximumPoolSize"; public static String jmxLargestPoolSizeMethod = "setLargestPoolSize"; public static String jmxTaskCountMethod = "setTaskCount"; public static String jmxCompletedTaskCountMethod = "setCompletedTaskCount"; @Bean public ThreadPoolStatus threadPoolStatus() { return new ThreadPoolStatus(); } @Bean public MBeanServerFactoryBean mbeanServer() { return new MBeanServerFactoryBean(); } @Bean public RmiRegistryFactoryBean registry() { return new RmiRegistryFactoryBean(); } @Bean @DependsOn("registry") public ConnectorServerFactoryBean connectorServer() throws MalformedObjectNameException { MessageRecvExecutor ref = MessageRecvExecutor.getInstance(); String ipAddr = StringUtils.isNotEmpty(ref.getServerAddress()) ? StringUtils.substringBeforeLast(ref.getServerAddress(), DELIMITER) : "localhost"; url = "service:jmx:rmi://" + ipAddr + "/jndi/rmi://" + ipAddr + ":1099/nettyrpcstatus"; System.out.println("NettyRPC JMX MonitorURL : [" + url + "]"); ConnectorServerFactoryBean connectorServerFactoryBean = new ConnectorServerFactoryBean(); connectorServerFactoryBean.setObjectName("connector:name=rmi"); connectorServerFactoryBean.setServiceUrl(url); return connectorServerFactoryBean; } public static void monitor(ThreadPoolStatus status) throws IOException, MalformedObjectNameException, ReflectionException, MBeanException, InstanceNotFoundException { MBeanServerConnectionFactoryBean mBeanServerConnectionFactoryBean = new MBeanServerConnectionFactoryBean(); mBeanServerConnectionFactoryBean.setServiceUrl(url); mBeanServerConnectionFactoryBean.afterPropertiesSet(); MBeanServerConnection connection = mBeanServerConnectionFactoryBean.getObject(); ObjectName objectName = new ObjectName("com.newlandframework.rpc.parallel.jmx:name=threadPoolStatus,type=ThreadPoolStatus"); connection.invoke(objectName, jmxPoolSizeMethod, new Object[]{status.getPoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxActiveCountMethod, new Object[]{status.getActiveCount()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxCorePoolSizeMethod, new Object[]{status.getCorePoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxMaximumPoolSizeMethod, new Object[]{status.getMaximumPoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxLargestPoolSizeMethod, new Object[]{status.getLargestPoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxTaskCountMethod, new Object[]{status.getTaskCount()}, new String[]{long.class.getName()}); connection.invoke(objectName, jmxCompletedTaskCountMethod, new Object[]{status.getCompletedTaskCount()}, new String[]{long.class.getName()}); } }
NettyRPC服务器启动成功之后,就可以通过JMX接口进行监控:可以打开jconsole,然后输入URL:service:jmx:rmi://127.0.0.1/jndi/rmi://127.0.0.1:1099/nettyrpcstatus,用户名、密码默认为空,点击连接按钮。
当有客户端进行RPC请求的时候,通过JMX可以看到如下的监控界面:
这个时候点击NettyRPC线程池各个监控指标的按钮,就可以直观的看到NettyRPC实际运行中,线程池的主要参数指标的实时监控。比如点击:getCompletedTaskCount,想查看一下目前已经完成的线程任务总数指标。具体情况如下图所示:
可以看到,目前已经处理了40280笔RPC请求。这样,我们就可以准实时监控NettyRPC线程池参数设置、容量规划是否合理,以便及时作出调整,合理的最大程度利用软硬件资源。
最后经过重构之后,NettyRPC服务端的Spring配置(NettyRPC/NettyRPC 2.0/main/resources/rpc-invoke-config-server.xml)如下:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:nettyrpc="http://www.newlandframework.com/nettyrpc" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.newlandframework.com/nettyrpc http://www.newlandframework.com/nettyrpc/nettyrpc.xsd"> <!--加载rpc服务器的ip地址、端口信息--> <context:property-placeholder location="classpath:rpc-server.properties"/> <!--定义rpc服务接口--> <nettyrpc:service id="demoAddService" interfaceName="com.newlandframework.rpc.services.AddCalculate" ref="calcAddService"></nettyrpc:service> <nettyrpc:service id="demoMultiService" interfaceName="com.newlandframework.rpc.services.MultiCalculate" ref="calcMultiService"></nettyrpc:service> <!--注册rpc服务器,并通过protocol指定序列化协议--> <nettyrpc:registry id="rpcRegistry" ipAddr="${rpc.server.addr}" protocol="PROTOSTUFFSERIALIZE"></nettyrpc:registry> <!--rpc服务实现类声明--> <bean id="calcAddService" class="com.newlandframework.rpc.services.impl.AddCalculateImpl"></bean> <bean id="calcMultiService" class="com.newlandframework.rpc.services.impl.MultiCalculateImpl"></bean> </beans>
通过nettyrpc:service标签定义rpc服务器支持的服务接口,这里的样例声明了当前的rpc服务器提供了加法计算、乘法计算两种服务给客户端进行调用。具体通过Spring自定义标签的实现,大家可以自行参考github:NettyRPC/NettyRPC 2.0/main/java/com/newlandframework/rpc/spring(路径/包)中的实现代码,代码比较多得利用到了Spring框架的特性,希望大家能自行理解和分析。
然后通过bean标签声明了具体加法计算、乘法计算接口对应的实现类,都统一放在com.newlandframework.rpc.services包之中。
最后通过nettyrpc:registry注册了rpc服务器,ipAddr属性定义了该rpc服务器对应的ip/端口信息。protocol用来指定,当前rpc服务器支持的消息序列化协议类型。
目前已经实现的类型有:JDK原生的对象序列化(ObjectOutputStream/ObjectInputStream)、Kryo、Hessian、Protostuff一共四种序列化方式。
配置完成rpc-invoke-config-server.xml之后,就可以启动RPC服务器Main函数入口:com.newlandframework.rpc.boot.RpcServerStarter。通过Maven打包、部署在(Red Hat Enterprise Linux Server release 5.7 (Tikanga) 64位系统,其内核版本号:Kernel 2.6.18-274.el5 on an x86_64),可以启动NettyRPC,如果一切正常的话,在CRT终端上会显示如下输出:
这个时候再进行客户端的Spring配置(NettyRPC/NettyRPC 2.0/test/resources/rpc-invoke-config-client.xml)。
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:nettyrpc="http://www.newlandframework.com/nettyrpc" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.newlandframework.com/nettyrpc http://www.newlandframework.com/nettyrpc/nettyrpc.xsd"> <!--加载RPC服务端对应的ip地址、端口信息--> <context:property-placeholder location="classpath:rpc-server.properties"/> <!--客户端调用的RPC服务信息(加法计算、乘法计算服务)--> <nettyrpc:reference id="addCalc" interfaceName="com.newlandframework.rpc.services.AddCalculate" protocol="PROTOSTUFFSERIALIZE" ipAddr="${rpc.server.addr}"/> <nettyrpc:reference id="multiCalc" interfaceName="com.newlandframework.rpc.services.MultiCalculate" protocol="PROTOSTUFFSERIALIZE" ipAddr="${rpc.server.addr}"/> </beans>
其中加法计算、乘法计算的demo代码如下:
package com.newlandframework.rpc.services; /** * @author tangjie<https://github.com/tang-jie> * @filename:Calculate.java * @description:Calculate功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public interface AddCalculate { //两数相加 int add(int a, int b); }
package com.newlandframework.rpc.services.impl; import com.newlandframework.rpc.services.AddCalculate; /** * @author tangjie<https://github.com/tang-jie> * @filename:CalculateImpl.java * @description:CalculateImpl功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class AddCalculateImpl implements AddCalculate { //两数相加 public int add(int a, int b) { return a + b; } }
package com.newlandframework.rpc.services; /** * @author tangjie<https://github.com/tang-jie> * @filename:Calculate.java * @description:Calculate功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public interface MultiCalculate { //两数相乘 int multi(int a, int b); }
package com.newlandframework.rpc.services.impl; import com.newlandframework.rpc.services.MultiCalculate; /** * @author tangjie<https://github.com/tang-jie> * @filename:CalculateImpl.java * @description:CalculateImpl功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class MultiCalculateImpl implements MultiCalculate { //两数相乘 public int multi(int a, int b) { return a * b; } }
值得注意的是客户端NettyRPC的Spring配置除了指定调用远程RPC的服务服务信息之外,还必须配置远程RPC服务端对应的ip地址、端口信息、协议类型这些要素,而且必须和RPC服务端保持一致,这样才能正常的进行消息的编码、解码工作。
现在我们就模拟1W个瞬时并发的加法、乘法计算请求,一共2W笔请求操作,调用远程RPC服务器上的计算模块,我们默认采用protostuff序列化方式进行RPC消息的编码、解码。注意,测试代码的样例基于1W笔瞬时并发计算请求,不是1W笔循环进行计算请求,这个是衡量RPC服务器吞吐量的一个重要指标,因此这里的测试样例是基于CountDownLatch进行编写的,类java.util.concurrent.CountDownLatch是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。这里是加法计算RPC请求、乘法计算RPC请求,在RPC客户端分别先启动1W个线程,这个时候先挂起,然后等待请求信号,瞬时发起RPC请求。具体代码如下:
首先是加法计算并发请求类AddCalcParallelRequestThread:
package com.newlandframework.test; import com.newlandframework.rpc.services.AddCalculate; import java.util.concurrent.CountDownLatch; import java.util.logging.Level; import java.util.logging.Logger; /** * @author tangjie<https://github.com/tang-jie> * @filename:AddCalcParallelRequestThread.java * @description:AddCalcParallelRequestThread功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class AddCalcParallelRequestThread implements Runnable { private CountDownLatch signal; private CountDownLatch finish; private int taskNumber = 0; private AddCalculate calc; public AddCalcParallelRequestThread(AddCalculate calc, CountDownLatch signal, CountDownLatch finish, int taskNumber) { this.signal = signal; this.finish = finish; this.taskNumber = taskNumber; this.calc = calc; } public void run() { try { //加法计算线程,先挂起,等待请求信号 signal.await(); //调用远程RPC服务器的加法计算方法模块 int add = calc.add(taskNumber, taskNumber); System.out.println("calc add result:[" + add + "]"); finish.countDown(); } catch (InterruptedException ex) { Logger.getLogger(AddCalcParallelRequestThread.class.getName()).log(Level.SEVERE, null, ex); } } }
其次是乘法计算并发请求类MultiCalcParallelRequestThread:
package com.newlandframework.test; import com.newlandframework.rpc.services.MultiCalculate; import java.util.concurrent.CountDownLatch; import java.util.logging.Level; import java.util.logging.Logger; /** * @author tangjie<https://github.com/tang-jie> * @filename:MultiCalcParallelRequestThread.java * @description:MultiCalcParallelRequestThread功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class MultiCalcParallelRequestThread implements Runnable { private CountDownLatch signal; private CountDownLatch finish; private int taskNumber = 0; private MultiCalculate calc; public MultiCalcParallelRequestThread(MultiCalculate calc, CountDownLatch signal, CountDownLatch finish, int taskNumber) { this.signal = signal; this.finish = finish; this.taskNumber = taskNumber; this.calc = calc; } public void run() { try { //乘法计算线程,先挂起,等待请求信号 signal.await(); //调用远程RPC服务器的乘法计算方法模块 int multi = calc.multi(taskNumber, taskNumber); System.out.println("calc multi result:[" + multi + "]"); finish.countDown(); } catch (InterruptedException ex) { Logger.getLogger(MultiCalcParallelRequestThread.class.getName()).log(Level.SEVERE, null, ex); } } }
现在写出一个调用的测试客户端RpcParallelTest,测试RPC服务器的性能,以及是否正确计算出最终的结果。测试客户端RpcParallelTest的具体代码如下:
package com.newlandframework.test; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import com.newlandframework.rpc.services.AddCalculate; import com.newlandframework.rpc.services.MultiCalculate; import org.apache.commons.lang3.time.StopWatch; import org.springframework.context.support.ClassPathXmlApplicationContext; /** * @author tangjie<https://github.com/tang-jie> * @filename:RpcParallelTest.java * @description:RpcParallelTest功能模块 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class RpcParallelTest { public static void parallelAddCalcTask(AddCalculate calc, int parallel) throws InterruptedException { //开始计时 StopWatch sw = new StopWatch(); sw.start(); CountDownLatch signal = new CountDownLatch(1); CountDownLatch finish = new CountDownLatch(parallel); for (int index = 0; index < parallel; index++) { AddCalcParallelRequestThread client = new AddCalcParallelRequestThread(calc, signal, finish, index); new Thread(client).start(); } signal.countDown(); finish.await(); sw.stop(); String tip = String.format("加法计算RPC调用总共耗时: [%s] 毫秒", sw.getTime()); System.out.println(tip); } public static void parallelMultiCalcTask(MultiCalculate calc, int parallel) throws InterruptedException { //开始计时 StopWatch sw = new StopWatch(); sw.start(); CountDownLatch signal = new CountDownLatch(1); CountDownLatch finish = new CountDownLatch(parallel); for (int index = 0; index < parallel; index++) { MultiCalcParallelRequestThread client = new MultiCalcParallelRequestThread(calc, signal, finish, index); new Thread(client).start(); } signal.countDown(); finish.await(); sw.stop(); String tip = String.format("乘法计算RPC调用总共耗时: [%s] 毫秒", sw.getTime()); System.out.println(tip); } public static void addTask(AddCalculate calc, int parallel) throws InterruptedException { RpcParallelTest.parallelAddCalcTask(calc, parallel); TimeUnit.MILLISECONDS.sleep(30); } public static void multiTask(MultiCalculate calc, int parallel) throws InterruptedException { RpcParallelTest.parallelMultiCalcTask(calc, parallel); TimeUnit.MILLISECONDS.sleep(30); } public static void main(String[] args) throws Exception { //并行度10000 int parallel = 10000; //加载Spring配置信息 ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("classpath:rpc-invoke-config-client.xml"); //并发进行RPC加法计算、乘法计算请求 addTask((AddCalculate) context.getBean("addCalc"), parallel); multiTask((MultiCalculate) context.getBean("multiCalc"), parallel); System.out.printf("[author tangjie] Netty RPC Server 消息协议序列化并发验证结束!\n\n"); context.destroy(); } }
Netty RPC客户端运行情况,具体截图如下:下面是开始收到RPC服务器加法计算的结果截图。
好了,加法RPC请求计算完毕,控制台打印出请求耗时。
接着是调用RPC并行乘法计算请求,同样,控制台上也打印出请求耗时。
接着RPC的客户端运行完毕、退出,我们继续看下NettyRPC服务端的运行截图:
可以发现,NettyRPC的服务端确实都收到了来自客户端发起的RPC计算请求,给每个RPC消息标识出了唯一的消息编码,并进行了RPC计算处理之后,成功的把消息应答给了客户端。
经过一系列的模块重构,终于将NettyRPC重新升级了一下,经过这次重构工作,感觉自己对Netty、Spring、Java线程模型的了解更加深入了,不积跬步无以至千里,千里之行始于足下。学习靠的就是这样一点一滴的重复积累,才能将自己的能力提升一个台阶。
原创文章,加上本人才疏学浅,文笔有限,本文中有说得不对的地方,望各位同行不吝赐教。文中有忽略的地方希望读者可以补充,错误的地方还望斧正。
最后附上NettyRPC的开源项目地址:https://github.com/tang-jie/NettyRPC 中的NettyRPC 2.0项目。
感谢大家耐心阅读NettyRPC系列文章,如果本文对你有帮助,请点下推荐吧!
猜你喜欢:本文转载自: https://www.cnblogs.com/jietang/p/5983038.html