TensorFlow 的简化接口 Scikit Flow

码农软件 · 软件分类 · 神经网络/人工智能 · 2019-10-15 12:57:33

软件介绍

Scikit Flow 是 TensorFlow 的简化接口,模仿 Scikit 学习,让用户可以在预测分析和数据挖掘中使用。

为什么使用 TensorFlow?

  • TensorFlow 提供构建各种不同类型机器学习应用的核心

  • 会继续在分布式方向和常规管道机器中进行创新

为什么使用 Scikit Flow?

  • 可以平滑的从单向机器学习 Scikit Learn 过渡到更开放的,可以构建不同类型的 ML 模型。用户可以通过 fit/predict 和切换到 TensorFlow APIs。

  • 提供一系列的参考模型,方便与现有的代码集成。

Linear Classifier

import skflow
from sklearn import datasets, metrics
iris = datasets.load_iris()
classifier = skflow.TensorFlowLinearClassifier(n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)

Linear Regressor

import skflow
from sklearn import datasets, metrics, preprocessing

boston = datasets.load_boston()
X = preprocessing.StandardScaler().fit_transform(boston.data)
regressor = skflow.TensorFlowLinearRegressor()
regressor.fit(X, boston.target)
score = metrics.mean_squared_error(regressor.predict(X), boston.target)
print ("MSE: %f" % score)

Deep Neural Network

import skflow
from sklearn import datasets, metrics

iris = datasets.load_iris()
classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)

Custom model

import skflow
from sklearn import datasets, metrics

iris = datasets.load_iris()

def my_model(X, y):
    """This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability."""
    layers = skflow.ops.dnn(X, [10, 20, 10], keep_prob=0.5)
    return skflow.models.logistic_regression(layers, y)

classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)

未来计划

  • 更好的处理类别变量

  • 文本分类

  • 图像 (CNNs)

  • 更多 & 更深

本文地址:https://www.codercto.com/soft/d/16808.html

精通Python设计模式

精通Python设计模式

[荷] Sakis Kasampalis / 夏永锋 / 人民邮电出版社 / 2016-7 / 45.00元

本书分三部分、共16章介绍一些常用的设计模式。第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。一起来看看 《精通Python设计模式》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器