分布式深度学习 CaffeOnSpark

码农软件 · 软件分类 · 神经网络/人工智能 · 2019-10-15 11:14:20

软件介绍

许多现有的DL框架需要一个分离的集群进行深度学习,而一个典型的机器学习管道需要创建一个复杂的程序(如图1)。分离的集群需要大型的数据集在它们之间进行传输,从而系统的复杂性和端到端学习的延迟不请自来。

图1 分离集群上复杂程序的ML Pipeline


雅虎认为,深度学习应该与现有的支持特征工程和传统(非深度)机器学习的数据处理管道在同一个集群中,创建CaffeOnSpark意在使得深度学习训练和测试能被嵌入到Spark应用程序(如图2)中。

图2 单一集群上单程序的ML Pipeline


CaffeOnSpark:API&配置和CLI

CaffeOnSpark被设计成为一个Spark深度学习包。Spark MLlib支持各种非深度学习算法用于分类、回归、聚类、推荐等,但目前缺乏深度学习这一关键能力,而CaffeOnSpark旨在填补这一空白。CaffeOnSpark API支持dataframes,以便易于连接准备使用Spark应用程序的训练数据集,以及提取模型的预测或中间层的特征,用于MLLib或SQL数据分析。

图3 CaffeOnSpark成为一个Spark深度学习package

系统架构:

CaffeOnSpark系统架构如图4所示(和之前相比没有变化)。Spark executor中,Caffe引擎在GPU设备或CPU设备上,通过调用一个细颗粒内存管理的JNI层。不同于传统的Spark应用,CaffeOnSpark executors之间通过MPI allreduce style接口通信,通过TCP/以太网或者RDMA/Infiniband。这个Spark+MPI架构使得CaffeOnSpark能够实现和专用深度学习集群相似的性能。

许多深度学习工作是长期运行的,处理潜在的系统故障很重要。CaffeOnSpark支持定期快照训练状态,因此job出现故障后能够恢复到之前的状态。 

雅虎已经在多个项目中应用CaffeOnSpark,如Flickr小组通过在Hadoop集群上用CaffeOnSpark训练数百万张照片,显著地改进图像识别精度。现在深度学习研究者可以在一个AWS EC2云或自建的Spark集群上进行测试CaffeOnSpark。

本文地址:https://www.codercto.com/soft/d/16801.html

PHP 5权威编程

PHP 5权威编程

(美)古曼兹等 / 简张桂 / 电子工业出版社 / 2007-12 / 90.00元

《BRUCE PERENS开源系列丛书•PHP 5权威编程》为大家全面介绍了PHP 5中的新功能、面向对象编程方法及设计模式,还分析阐述了PHP5中新的数据库连接处理、错误处理和XML处理等机制。希望能够帮助读者系统了解、熟练掌握PHP,最大程度地挖掘:PHP的潜力,以更低的成本搭建更加稳健、高效的PHP应用。 近年来,随着使用PHP的大流量网站逐渐增加,企业在使用PHP的时候开始面临新的问......一起来看看 《PHP 5权威编程》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具