分布式执行引擎 Ray

码农软件 · 软件分类 · 神经网络/人工智能 · 2019-10-14 13:12:50

软件介绍

Ray 是一个高性能的分布式执行引擎,开源的人工智能框架,目标之一在于:让开发者可以用一个运行在笔记本电脑上的原型算法,仅需添加数行代码就能轻松转为适合于计算机集群运行的(或单个多核心计算机的)高性能分布式应用。这样的框架需要包含手动优化系统的性能优势,同时又不需要用户关心那些调度、数据传输和硬件错误等问题。

与深度学习框架的关系:Ray 与 TensorFlow、PyTorch 和 MXNet 等深度学习框架互相兼容,在很多应用上,在 Ray 中使用一个或多个深度学习框架都是非常自然的(例如,UC Berkeley 的强化学习库就用到了很多 TensorFlow 与 PyTorch)。

与其他分布式系统的关系:目前的很多流行分布式系统都不是以构建 AI 应用为目标设计的,缺乏人工智能应用的相应支持与 API,UC Berkeley 的研究人员认为,目前的分布式系统缺乏以下一些特性:

  • 支持毫秒级的任务处理,每秒处理百万级的任务;

  • 嵌套并行(任务内并行化任务,例如超参数搜索内部的并行模拟,见下图);

  • 在运行时动态监测任意任务的依赖性(例如,忽略等待慢速的工作器);

  • 在共享可变的状态下运行任务(例如,神经网络权重或模拟器);

  • 支持异构计算(CPU、GPU 等等)。

Ray 有两种主要使用方法:通过低级 API 或高级库。高级库是构建在低级 API 之上的。目前它们包括 Ray RLlib,一个可扩展强化学习库;和 Ray.tune,一个高效分布式超参数搜索库。

Ray 的低层 API

开发 Ray API 的目的是让我们能更自然地表达非常普遍的计算模式和应用,而不被限制为固定的模式,就像 MapReduce 那样。

动态任务图

Ray 应用的基础是动态任务图。这和 TensorFlow 中的计算图很不一样。TensorFlow 的计算图用于表征神经网络,在单个应用中执行很多次,而 Ray 的任务图用于表征整个应用,并仅执行一次。任务图对于前台是未知的,随着应用的运行而动态地构建,且一个任务的执行可能创建更多的任务。

本文地址:https://www.codercto.com/soft/d/16737.html

支付战争

支付战争

埃里克•杰克逊 / 徐彬、王晓、清华大学五道口金融学院未央研究 审译 / 中信出版社 / 2015-5-19 / 49.00

这是一个野心勃勃的创业计划,在线支付鼻祖PayPal试图创造一个“统治世界”的金融操作系统,并在全球成功推广一款颠覆式的互联网产品。 《支付战争》的作者是“PayPal黑帮”成员之一,他真实还原了这个伟大产品是如何诞生的,以及在后来的发展壮大之路上,如何应对融资紧张、突破增长瓶颈,在竞争者凶猛围剿与平台商霸王条款的夹击下,逆境求生,改变业务模式,最终完成IPO,并成功出售给竞争对手eBay的......一起来看看 《支付战争》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具