Python3 迭代器与生成器
迭代器
迭代是Python最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
迭代器有两个基本的方法:iter() 和 next()。
字符串,列表或元组对象都可用于创建迭代器:
实例(Python 3.0+)
迭代器对象可以使用常规for语句进行遍历:
实例(Python 3.0+)
执行以上程序,输出结果如下:
1 2 3 4
也可以使用 next() 函数:
实例(Python 3.0+)
执行以上程序,输出结果如下:
1 2 3 4
创建一个迭代器
把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。
如果你已经了解的面向对象编程,就知道类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。
更多内容查阅:Python3 面向对象
__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。
__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。
创建一个返回数字的迭代器,初始值为 1,逐步递增 1:
实例(Python 3.0+)
执行输出结果为:
1 2 3 4 5
StopIteration
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
在 20 次迭代后停止执行:
实例(Python 3.0+)
执行输出结果为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。
以下实例使用 yield 实现斐波那契数列:
实例(Python 3.0+)
执行以上程序,输出结果如下:
0 1 1 2 3 5 8 13 21 34 55
点击查看所有 Python 3 教程 文章: https://www.codercto.com/courses/l/10.html
大型网站技术架构演进与性能优化
许令波 / 电子工业出版社 / 2018-6 / 79
《大型网站技术架构演进与性能优化》从一名亲历者的角度,阐述了一个网站在业务量飞速发展的过程中所遇到的技术转型等各种问题及解决思路。从技术发展上看,网站经历了Web应用系统从分布式、无线多端、中台到国际化的改造;在解决大流量问题的方向上,涉及了从端的优化到管道到服务端甚至到基础环境优化的各个层面。 《大型网站技术架构演进与性能优化》总结的宝贵经验教训可以帮助读者了解当网站遇到类似问题时,应如何......一起来看看 《大型网站技术架构演进与性能优化》 这本书的介绍吧!
UNIX 时间戳转换
UNIX 时间戳转换
RGB CMYK 转换工具
RGB CMYK 互转工具