内容简介:Parsr, is a minimal-footprint document (image, pdf) cleaning, parsing and extraction toolchain which generates readily available, organized and usable data for data scientists and developers.
Turn your documents into data!
Parsr, is a minimal-footprint document (image, pdf) cleaning, parsing and extraction toolchain which generates readily available, organized and usable data for data scientists and developers.
It provides users with clean structured and label-enriched information set for ready-to-use applications ranging from data entry and document analysis automation, archival, and many others.
Currently, Parsr can perform:
- Document Hierarchy Regeneration - Words, Lines and Paragraphs
- Headings Detection
- Table Detection and Reconstruction
- Lists Detection
- Text Order Detection
- Named Entity Recognition (Dates, Percentages, etc)
- Key-Value Pair Detection (for the extraction of specific form-based entries)
- Page Number Detection
- Header-Footer Detection
- Link Detection
- Whitespace Removal
Parsr takes as input an image (.JPG, .PNG, .TIFF, ...) or a PDF generates the following output formats:
- JSON
- Markdown
- Text
- CSV (for tables), or Pandas Dataframes (see here )
Table of Contents
- Turn your documents into data!
Getting Started
Installation
-- The advanced installation guide is available here --
The quickest way to install and run the Parsr API is through the docker image :
docker pull axarev/parsr
If you also wish to install the GUI for sending documents and visualising results:
docker pull axarev/parsr-ui-localhost
Note: Parsr can also be installed bare-metal (not via Docker containers), the procedure for which is documented in the installation guide .
Usage
-- The advanced usage guide is available here --
To run the API , issue:
docker run -p 3001:3001 axarev/parsr
which will launch it on http://localhost:3001 .
Consult the documentation on the usage of the API .
- To use the Jupyter Notebook and the python interface to the Parsr API, follow here .
- To use the GUI tool (the API needs to already be running), issue:
docker run -t -p 8080:80 axarev/parsr-ui-localhost:latest
Then, access it through http://localhost:8080 .
Refer to the Configuration documentation to interpret the configurable options in the GUI viewer.
The API based usage and the command line usage are documented in the advanced usage guide.
Documentation
All documentation files can be found here .
Contribute
Please refer to the contribution guidelines .
Third Party Licenses
Third Party Libraries licenses for its dependencies :
- QPDF : Apache http://qpdf.sourceforge.net
- GraphicsMagick : MIT http://www.graphicsmagick.org/index.html
- ImageMagick : Apache 2.0 https://imagemagick.org/script/license.php
- Pdfminer.six : MIT https://github.com/pdfminer/pdfminer.six/blob/master/LICENSE
- PDF.js : Apache 2.0 https://github.com/mozilla/pdf.js
- Tesseract : Apache 2.0 https://github.com/tesseract-ocr/tesseract
- Camelot : MIT https://github.com/camelot-dev/camelot
- MuPDF (Optional dependency): AGPL https://mupdf.com/license.html
- Pandoc (Optional dependency): GPL https://github.com/jgm/pandoc
License
Copyright 2019 AXA Group Operations S.A.
Licensed under the Apache 2.0 license (see the LICENSE file).
以上所述就是小编给大家介绍的《Show HN: Parsr – A toolchain to transform documents in usable structured text》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
群智能优化算法及其应用
雷秀娟 / 2012-8 / 85.00元
《群智能优化算法及其应用》编著者雷秀娟。 《群智能优化算法及其应用》内容提要:本书以群智能优化算法中的粒子群优化(]Particle Swarm Optimization,PSO)算法为主线,着重阐述了PSO算法的基本原理、改进策略,从解空间设计、粒子编码以及求解流程等方面进行了详细设计与阐述,对蚁群优化(Ant Colony Optimization,AC0)算法、人工鱼群(Art......一起来看看 《群智能优化算法及其应用》 这本书的介绍吧!