使用ggtree实现进化树的可视化和注释

栏目: CSS · CSS3 · 发布时间: 6年前

内容简介:使用ggtree实现进化树的可视化和注释

本文作者:余光创,目前就读于香港大学公共卫生系,开发过多个R/Bioconductor包,包括ChIPseeker, clusterProfiler, DOSE,ggtree,GOSemSim和ReactomePA。

进化树看起来和层次聚类很像。有必要解释一下两者的一些区别。

层次聚类的侧重点在于分类,把距离近的聚在一起。而进化树的构建虽然也可以说是一个聚类过程,但侧重点在于推测进化关系和进化距离(evolutionary distance)。

层次聚类的输入是距离,比如euclidean或manhattan距离。把距离近的聚在一起。而进化树推断是从生物序列(DNA或氨基酸)的比对开始。最简单的方法是计算一下序列中不匹配的数目,称之为hamming distance(通常用序列长度做归一化),使用距离当然也可以应用层次聚类的方法。进化树的构建最简单的方法是非加权配对平均法(Unweighted Pair Group Method with Arithmetic Mean, UPGMA),这其实是使用average linkage的层次聚类。这种方法在进化树推断上现在基本没人用。更为常用的是邻接法(neighbor joining),两个节点距离其它节点都比较远,而这两个节点又比较近,它们就是neighbor,可以看出neighbor不一定是距离最近的两个节点。真正做进化的人,基本不用这些基于距离的方法。现在主流的方法是最大似然法(Maximum likelihood, ML),通过进化模型(evolutionary model)估计拓朴结构和分支长度,估计的结果具有最高的概率能够产生观测数据(多序列比对)。另外还有最大简约法和贝叶斯推断等方法用于构建进化树。

使用ggtree实现进化树的可视化和注释

Newick是最常用的存储进化树的文件格式,如上面这个树,拓朴结构用newick格式可以表示为:

(B,(A,C,E),D);

括号最外层是根节点,它有三个子节点,B, (A,C,E)和D,而节点(A,C,E)也有三个子节点A,C和E。

加上分支长度,使用 : 来分隔:

(B:6.0,(A:5.0,C:3.0,E:4.0):5.0,D:11.0);

比如A:5.0代表的是A与其父节点的距离是5.0。

内部节点也可以有label,写在相应的括号外面,如下所示:

(B:6.0,(A:5.0,C:3.0,E:4.0)Ancestor1:5.0,D:11.0);

这是最为广泛支持的文件格式,很多进化树可视软件只支持newick格式。

ggtree的开发源自于我需要在树上做注释,发现并没有软件可以很容易地实现,通常情况下我们把统计信息加到节点的label上来展示,比如CodeML的dN/dS分析,输出文件里就给用户准备了newick树文本,把dN/dS (ω) 加于节点label之上:

codeml_file <- system.file("extdata/PAML_Codeml/mlc", package="ggtree")tree_text <- readLines(codeml_file)[375:376]tree_text
## [1] "w ratios as labels for TreeView:"                            ## [2] "(K #0.0224 , N #0.0095 , (D #0.0385 , (L #0.0001 , (J #0.0457 , (G #0.1621 , ((C #0.0461 , (E #0.0641 , O #0.0538 ) #0.0001 ) #0.0395 , (H #0.1028 , (I #0.0001 , (B #0.0001 , (A #0.0646 , (F #0.2980 , M #0.0738 ) #0.0453 ) #0.0863 ) #1.5591 ) #0.0001 ) #0.0001 ) #0.0549 ) #0.0419 ) #0.0001 ) #0.0964 ) #0.0129 );"

这种做法只能展示一元信息,而且修改节点label真心是个脏活,满满的都是不爽,我心中理想的方式是树与注释信息分开,注释信息可以方便地通过图层加上去,而且可以自由组合。于是着手开发ggtree。ggtree是个简单易用的R包,一行代码ggtree(read.tree(file))即可实现树的可视化。而注释通过图层来实现,多个图层可以完成复杂的注释,这得力于ggtree的设计。其中最重要的一点是如何来解析进化树。

ggtree的设计进化树的解析

除了ggtree之外,我所了解到的其它画树软件在画树的时候都把树当成是线条的集合。很明显画出来的进化树就是一堆线条,但是线条表示的是父节点和子节点的关系,除此之外没有任何意义,而节点在进化树上代表物种,叶子节点是我们构建进化树的物种,内部节点是根据叶子节点推断的共同祖先。我们所有的进化分析、推断、实验都是针对节点,节点才是进化树上有意义的实体。这是ggt ree设计的基础,ggtree只映射节点到坐标系统中,而线条在geom_tree图层中计算并画出 来。这是与其它软件最根本的不同,也是ggtree能够简单地用图层加注释信息的基础。

扩展ggplot2有很多可视化包基于ggplot2实现,包括各种gg打头的,号称扩展了ggplot2,支持图形语法(grammar of graphics),我并不认同。虽然基于ggplot2产生的图,我们可以用theme来进一步调整细节,用scale_系列函数来调整颜色和标尺的映射,但这些不足以称之为’支持图形语法’,图形语法最关键核心的部分我认为是图层和映射。

像ggphylo, OutbreakTools和phyloseq这几个包都有基于ggplot2的画树函数,但其实都不支持图形语法,它们所实现的是复杂的函数,画完就完事了,用户并不能使用图层来添加相关的信息。

如果在OutbreakTools这个包中:

if (show.tip.label) {

    p <- p + geom_text(data = df.tip, aes(x = x, y = y, label = label),                       hjust = 0, size = tip.label.size)}

如果show.tip.label=FALSE,当函数返回p时df.tip就被扔掉,用户想要再加tip.label就不可能了。ggphylo和phyloseq都是类似的实现,这些包把树解析为线条,所以节点相关的信息需要额外的data.frame来存储,并且只有极少数的预设参数,比如上面例子中的tip.label。在上面的例子中,用户连更改tip.label的颜色都不可能,更别说使用额外的注释信息了。

这几个包所实现的画图函数,都可以很容易地用ggtree实现,并且经过测试,ggtree运行速度比这几个包都要快。更多信息请参考ggtree的wiki页面。

ggtree是真正扩展ggplot2,支持图形语法的包。我们首先扩展ggplot支持tree object做为输入,并实现geom_tree图层来画线条。

library(ggplot2)
library(ggtree)
set.seed(2015-11-26)
tree <- rtree(30)
ggplot(tree, aes(x, y)) + geom_tree()

使用ggtree实现进化树的可视化和注释

ggtree函数是ggplot() + geom_tree() + xlab(NA) + ylab(NA) + theme_tree()的简单组合。

ggtree(tree)

使用ggtree实现进化树的可视化和注释

想要加tip.label,用geom_tiplab图层,并且ggplot2的图层都可以直接应用于ggtree。

ggtree(tree) + geom_tiplab() + geom_point(color='firebrick')

使用ggtree实现进化树的可视化和注释

树的操作与注释

ggtree提供了多个函数可以把clade放大缩小(scaleClade),折叠(collapse)和展开(expand),位置调换(flip)和旋转(rotate),以及分类(groupOTU, groupClade)。

nwk <- system.file("extdata", "sample.nwk", package="ggtree")
tree <- read.tree(nwk)
p <- ggtree(tree)
cp <- ggtree(tree) %>% collapse(node=21) + ggtitle('collapse')
ep <- cp %>% expand(node=21) + ggtitle('expand')
hp <- p %>% hilight(node=21) + ggtitle('hilight')
rp <- hp %>% rotate(node=21) + ggtitle('rotate')
library(gridExtra)
grid.arrange(cp, ep, hp, rp, ncol=2)

使用ggtree实现进化树的可视化和注释

支持多种文件格式

ggtree支持的文件格式包括Newick, Nexus, NHX和jplace。

上面已经展示了Newick格式,下面的例子是NHX格式:

nhxfile = system.file("extdata", "ADH.nhx", package="ggtree")
nhx <- read.nhx(nhxfile)
ggtree(nhx, ladderize=F) + geom_tiplab() + geom_point(aes(color=S), size=8, alpha=.3) +
theme(legend.position="right") +
geom_text(aes(label=branch.length, x=branch), vjust=-.5) +
xlim(NA, 0.3)

使用ggtree实现进化树的可视化和注释

支持解析多种软件的输出文件我们知道FigTree是针对BEAST的输出设计的,可以把BEAST的统计推断拿来给树做注释,但很多的进化分析软件并没有相应的画树软件支持,用户很难把信息展示出来。

ggtree支持ape, phangorn, r8s, RAxML, PAML, HYPHY, EPA, pplacer和BEAST的输出。相应的统计分析结果可以应用于树的注释。可以说ggtree把这些软件分析的结果带给了R用户,通过ggtree的解析, 这些进化分析结果可以进一步在R里进行处理和统计分析,并不单单是在ggtree中展示而已。RAxML bootstrap分析

raxml_file <- system.file("extdata/RAxML", "RAxML_bipartitionsBranchLabels.H3", package="ggtree")
raxml <- read.raxml(raxml_file)ggtree(raxml) + geom_text(aes(label=bootstrap, color=bootstrap)) +
scale_color_gradient(high='red', low='darkgreen') +
theme(legend.position='right')

使用ggtree实现进化树的可视化和注释

multiPhylo也是支持的,所以100颗bootstrap树可以同时用一行代码展示出来。

btree_file <- system.file("extdata/RAxML", "RAxML_bootstrap.H3", package="ggtree")
btree = read.tree(btree_file)
ggtree(btree) + facet_wrap(~.id, ncol=10)

使用ggtree实现进化树的可视化和注释

如果不分面,这100颗树会重叠画在一起,这也能很好地展示bootstrap分析的结果,bootstrap值低的clade,线条会比较乱,而bootstrap值高的地方,线条一致性比较好。PAML

使用BaseML预测的祖先序列,ggtree解析结果的同时会把父节点到子节点的subsitution给统计出来,可以直接在树上注释:

rstfile <- system.file("extdata/PAML_Baseml", "rst", package="ggtree")
rst <- read.paml_rst(rstfile)
p <- ggtree(rst) + geom_text(aes(label=marginal_AA_subs, x=branch), vjust=-.5)
print(p)

使用ggtree实现进化树的可视化和注释

不同于BaseML以碱基为单位,CodeML预测祖先序列,以密码子为单位。ggtree定义了一个操作符%<%,如果有相同的注释信息要展示,可以用tree object来更新tree view。

rstfile <- system.file("extdata/PAML_Codeml", "rst", package="ggtree")
crst <- read.paml_rst(rstfile)
p %<% crst

使用ggtree实现进化树的可视化和注释

像上面的例子,用crst来更新p,就是用crst画出来的树+注释。对比两图,可以发现BaseML和CodeML推测的祖先序列是稍有不同的。

CodeML的dN/dS分析,我们可以直接把数据拿来给树上色。同样道理分类数据也可以拿来上色。

mlc_file <- system.file("examples/mlc", package="ggtree")
mlc <- read.codeml_mlc(mlc_file)
ggtree(mlc, aes(color=dN_vs_dS)) +
scale_color_continuous(limits=c(0, 1.5), high='red', low='green', oob=scales::squish, name='dN/dS') +
theme(legend.position='right')

使用ggtree实现进化树的可视化和注释

使用用户定义数据

进化树已经被广泛应用于各种跨学科的研究中,随着实验技术的发展,各种数据也更易于获得,使用用户数据注释进化树,也是ggtree所支持的。

nwk <- system.file("extdata", "sample.nwk", package="ggtree")
tree <- read.tree(nwk)
p <- ggtree(tree)
dd <- data.frame(taxa = LETTERS[1:13],
place = c(rep("GZ", 5), rep("HK", 3), rep("CZ", 4), NA), value = round(abs(rnorm(13, mean=70, sd=10)), digits=1))
## you don't need to order the data
## data was reshuffled just for demonstration
dd <- dd[sample(1:13, 13), ]
row.names(dd) <- NULL
print(dd)
##    taxa place value

## 1     A    GZ  68.8

## 2     J    CZ  56.8

## 3     L    CZ  74.7

## 4     C    GZ  53.3

## 5     F    HK  62.8

## 6     B    GZ  60.8

## 7     E    GZ  87.1

## 8     M  <NA>  70.9

## 9     H    HK  67.0

## 10    G    HK  59.8

## 11    I    CZ  77.7

## 12    K    CZ  69.8

## 13    D    GZ  66.3

在上面的例子中,使用一个分类数据和一个连续型数据,输入的唯一要求是第一列是taxon label。ggtree中定义了操作符%<+%,来添加数据。添加之后,用户的数据对ggplot是可见的。可以用于树的注释。

p <- p %<+% dd + geom_text(aes(color=place, label=label), hjust=-0.5) + 

       geom_tippoint(aes(size=value, shape=place, color=place), alpha=0.25)p+theme(legend.position="right")

使用ggtree实现进化树的可视化和注释

ggtree还支持用户把自己的数据和树保存为jplace格式。

更多的实例请参考vignette。

ggtree允许把不同软件的分析结果整合在一起,同时在树上展示或者比较结果。在我们提交的论文中,使用了整合BEAST和CodeML的例子,在树上展示dN/dS、时间轴、氨基酸替换、clade support values、物种和基因型 (genotype)等多维信息,6种不同的信息同时展示在一颗进化树上,这是个复杂的例子,我们在附件1中展示了可重复的代码。如果有兴趣,可以留意一下我们的文章。 :)

其他好玩的功能

我们把树当成节点的集合,而不是线条的集合,这一点回归到了进化树的本质意义上,使这一实现成为可能。而支持图形语法,与ggplot2的无缝衔接又让注释变得更加容易。ggtree为我们打开了各种注释和操作的可能性。甚至于可以创造出好玩的图,比如使用showtext来加载图形化的字体、用emoji来画树、使用图片来注释树等等。

一个比较正经又好玩的是使用PhyloPic数据库上的图形。

pp <- ggtree(tree) %>% phylopic("79ad5f09-cf21-4c89-8e7d-0c82a00ce728", color="steelblue", alpha = .3)
pp + geom_tiplab(align=T, linetype='dashed', linesize=.5) + geom_tippoint(color='firebrick', size=2)

使用ggtree实现进化树的可视化和注释

一个好玩又为我们展现各种可能性的是  subview  函数,它使得图上加小图变得特别容易。并且已经被应用于 地图上加饼图 。解决这个问题的初衷在于,想要给节点加饼图注释。有了subview函数之后,这会变得很容易,当然我还没有写出给节点加饼图的函数,因为我还没有这个需求,得有一些实际的数据做参考,这样才能够设计出更易用的函数呈现给用户。

使用ggtree实现进化树的可视化和注释

使用ggtree实现进化树的可视化和注释 使用ggtree实现进化树的可视化和注释

本文由统计之都 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。

转载、引用前需联系作者,并署名作者且注明文章出处。

本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。


以上所述就是小编给大家介绍的《使用ggtree实现进化树的可视化和注释》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据结构

数据结构

严蔚敏、吴伟民 / 清华大学出版社 / 2007-3-1 / 30.0

《数据结构》(C语言版)是为“数据结构”课程编写的教材,也可作为学习数据结构及其算法的C程序设计的参数教材。 本书的前半部分从抽象数据类型的角度讨论各种基本类型的数据结构及其应用;后半部分主要讨论查找和排序的各种实现方法及其综合分析比较。其内容和章节编排1992年4月出版的《数据结构》(第二版)基本一致,但在本书中更突出了抽象数据类型的概念。全书采用类C语言作为数据结构和算法的描述语言。 ......一起来看看 《数据结构》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

在线进制转换器
在线进制转换器

各进制数互转换器