ML.NET 1.4 发布,跨平台机器学习框架

栏目: 软件资讯 · 发布时间: 5年前

内容简介:ML.NET 是一个面向 .NET 开发人员的开源和跨平台机器学习框架,它包括 Model Builder 和 CLI(命令行接口),让使用自动机器学习(AutoML)构建自定义机器学习模型变得更容易。1.4 版本已经发布了,以下是本次更新的一...

ML.NET 是一个面向 .NET 开发人员的开源和跨平台机器学习框架,它包括 Model Builder 和 CLI(命令行接口),让使用自动机器学习(AutoML)构建自定义机器学习模型变得更容易。1.4 版本已经发布了,以下是本次更新的一些亮点:

基于 GPU 支持的深度神经网络图像分类(GA)

ML.NET 1.4 发布,跨平台机器学习框架

在 .NET 中实现完整的 DNN 模型重新训练和传输学习。例如,你可以通过使用自己的图像从 ML.NET API 中本地培训 TensorFlow 模型来创建自己的自定义图像分类模型。ML.NET 的优点是使用了一个非常简单的高级 API,只需使用几行 C# 代码就可以定义和训练图像分类模型。而在使用低级别 Tensorflow.NET 库时,相同的操作则需要数百行代码。

Tensorflow.NET 库是一个开源的低级别 API 库,该库是开源 SciSharp 堆栈库的一部分,它为 TensorFlow 提供 .NET 标准绑定。下面的堆栈图显示了 ML.NET 是如何在 DNN 培训中实现这些新特性的:

ML.NET 1.4 发布,跨平台机器学习框架

图像分类功能最初是在 v1.4 预览版中引入的,在 GA 版本中添加了一下新功能:

  • 在 Windows 和 Linux 上支持 GPU,GPU 支持是基于 NVIDIA CUDA
  • 内存图像预测:用内存中的图像而不是文件路径来做预测
  • 当达到最佳精度时,它将停止训练,并且不会随着更多的训练周期(EIPCHS)而进一步提高
  • 在图像分类器中添加其他支持的 DNN 体系结构:Inception V3、ResNet V2 101、Resnet V2 50 和 Mobilenet V2 

下面的 API 代码示例展示了如何轻松地训练一个新的 TensorFlow 模型:

// Define model's pipeline with ImageClassification defaults (simplest way)
var pipeline = mlContext.MulticlassClassification.Trainers
      .ImageClassification(featureColumnName: "Image",
                            labelColumnName: "LabelAsKey",
                            validationSet: testDataView)
   .Append(mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel",
                                                         inputColumnName: "PredictedLabel"));

// Train the model
ITransformer trainedModel = pipeline.Fit(trainDataView);

Database Loader(GA)

ML.NET 1.4 发布,跨平台机器学习框架

数据库加载器允许将数据库中的数据加载到 IDataView 中,因此可以直接针对关系数据库进行模型培训。此加载程序支持 .NET Core 或 .NET Framework 中 System.Data 支持的任何关系数据库提供程序,这意味着可以使用任何 RDBMS,如 SQL Server、Azure SQL、Oracle、 SQLite 、PostgreSQL、 MySQL 、Advanced 等。

这个新的 Database Loader 提供更加简化的代码实现,因为它从数据库读取数据并通过 IDataView 提供数据的方式是由 ML.NET 框架提供的,所以只需要指定数据库连接字符串、DataSet 列的 SQL 语句以及加载数据时要使用的数据类。

下面是示例代码,说明如何轻松地配置代码,以便将数据直接从关系数据库加载到 IDataView 中:

//Lines of code for loading data from a database into an IDataView for a later model training
//...
string connectionString = @"Data Source=YOUR_SERVER;Initial Catalog= YOUR_DATABASE;Integrated Security=True";

string commandText = "SELECT * from SentimentDataset";

DatabaseLoader loader = mlContext.Data.CreateDatabaseLoader();
DbProviderFactory providerFactory = DbProviderFactories.GetFactory("System.Data.SqlClient");
DatabaseSource dbSource = new DatabaseSource(providerFactory, connectionString, commandText);

IDataView trainingDataView = loader.Load(dbSource);

// ML.NET model training code using the training IDataView
//...

public class SentimentData
{
    public string FeedbackText;
    public string Label;
}

当使用数据库 ML.NET 进行培训时也支持数据流,这意味着整个数据库不需要装入内存,它将根据需要从数据库中读取,从而可以处理非常大的数据库(即 50 GB、100 GB 或更大的数据库)。

可伸缩部署的预测引擎库(GA)

当将 ML 模型部署到多线程和可伸缩的 .NET Core Web 应用程序和服务(例如 ASP .NET Core Web 应用程序、Web API 或 Azure 函数)中时,推荐使用PredictionEnginePool,不针对每个请求直接创建 PredictionEngine 对象,PredictionEnginePool 是 Microsoft.Extensions.MLNuGet 包的一部分。

增强 .NET Core 3.0(GA)

在 Jupyter notebooks 中使用 ML.NET

ML.NET 1.4 发布,跨平台机器学习框架

现在可以在 Jupyter notebooks 中运行任何 .NET 代码(C#/F#),因此也可以在其中运行 ML.NET 代码。

查看 DataView 中加载的类型数据:

ML.NET 1.4 发布,跨平台机器学习框架

绘制数据分布:

ML.NET 1.4 发布,跨平台机器学习框架

培训 ML.NET 模型并记录其培训时间:

ML.NET 1.4 发布,跨平台机器学习框架

可在 notebook 中看到模型的质量指标,并将其记录下来供以后审查:

ML.NET 1.4 发布,跨平台机器学习框架

Visua lStudio 中 Model Builder 的更新

Visual Studio 的 Model Builder Tool 已经更新,使用最新的 ML.NET GA 版本(1.4 GA),此外,它还包括新特性,例如 Visual Studio 中的可视化体验,用于本地图像分类模型培训。

关于 ML.NET 的更多详情,请见发布说明:

https://devblogs.microsoft.com/dotnet/announcing-ml-net-1-4-global-availability-machine-learning-for-net/


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据结构与算法

数据结构与算法

2008-7 / 29.00元

《21世纪高等院校计算机教材系列·数据结构与算法(第2版)》详细讲述了线性结构、树结构和图结构中的数据表示及数据处理的方法,对查找和排序两种重要的数据处理进行了详细的探讨。一起来看看 《数据结构与算法》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具