TensorFlow 1.15.0 发布

栏目: 软件资讯 · 发布时间: 6年前

内容简介:TensorFlow 1.15.0 发布了,主要特性及改进如下: 针对当前具有 GPU 支持的平台(Linux 和 Windows),tensorflow pip 软件包默认情况下将包括 GPU 支持(现在与 tensorflow-gpu 相同)。它可以在装有和不装有 Nv...

TensorFlow 1.15.0 发布了,主要特性及改进如下:

  • 针对当前具有 GPU 支持的平台(Linux 和 Windows),tensorflow pip 软件包默认情况下将包括 GPU 支持(现在与 tensorflow-gpu 相同)。它可以在装有和不装有 Nvidia GPU 的机器上工作。tensorflow-gpu 仍然可用,对于关心软件包大小的用户,可以在 tensorflow-cpu 下载仅 CPU 软件包。
  • TensorFlow 1.15 在其 compat.v2 模块中包含 2.0 API 的完整实现。它包含 compat.v1 模块中 1.15 主模块的副本。TensorFlow 1.15 能够使用enable_v2_behavior() 函数模拟 2.0 行为。这样就可以编写向前兼容的代码:通过显式导入 tensorflow.compat.v1 或 tensorflow.compat.v2,可以确保代码在不修改 1.15 或 2.0 的情况下可以正常工作。
  • EagerTensor 现在支持张量的 numpy 缓冲区接口。
  • AutoGraph 将 Python 控制流转换为 TensorFlow 表达式,允许用户在装饰有 tf.function 的函数中编写常规 Python。 AutoGraph 还应用于与 tf.data,tf.distribute 和 tf.keras APIS 一起使用的函数中。
  • 添加 enable_tensor_equality(),以切换行为,从而:
    • 张量不再可散列。
    • 张量可以与 == 和 !=进行比较,产生布尔张量并具有逐元素比较结果。这将是 2.0 中的默认行为。
  • 自动混合精度图形优化器简化了将模型转换为 float16 以便在 Volta 和 Turing 张量核心上加速的过程。可以通过使用 tf.train.experimental.enable_mixed_precision_graph_rewrite() 包装优化器类来启用此功能。
  • 添加环境变量 TF_CUDNN_DETERMINISTIC。设置为 “true” 或 “1” 会强制选择确定性 cuDNN 卷积和最大池算法。启用此功能后,算法选择过程本身也是确定性的。
  • TensorRT
    • 将 TensorRT 转换源从 contrib 迁移到编译器目录,以准备 TF 2.0。
    • 为 TensorRT 转换添加其他易于使用的 TrtGraphConverter API。
    • 在TensorRT转换中扩展对TensorFlow运算符的支持(e.g.
      GatherSlicePackUnpackArgMinArgMax,DepthSpaceShuffle).
    • 在 TensorRT 转换中支持 TensorFlow 运算符 CombinedNonMaxSuppression 大大加快了物体检测模型的速度。

更新说明


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

顾客要买什么

顾客要买什么

[美]迈克尔·西尔 / 方海萍 / 中国人民大学出版社 / 2006-10 / 38.00元

《顾客要买什么》告诉我们全球的中产阶级如何正在改造着消费品市场:对低价的产品和服务进行趋低消费,对于高端的产品和服务要趋优消费,而对于日趋乏味、价值降低的中档商品则避而远之。这些消费者大多是女性,教育程度高,可支配收入多,买东西的时候也更会精打细算。她们选购、使用商品和服务的时候都是有目的的,有一种大权在握的感觉。消费对她们来说并不是非做不可的麻烦事,也不是什么无法避免的琐事,而是如何明智地花钱的......一起来看看 《顾客要买什么》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具