内容简介:MKL-DNN 是用于深度神经网络的英特尔数学核心库,是一款面向深度学习应用的开源性能库。 该库包括针对英特尔架构处理器和英特尔处理器显卡优化的神经网络的基本构建模块。 MKL-DNN 1.1 发布了,现重新命名为深度神...
MKL-DNN 是用于深度神经网络的英特尔数学核心库,是一款面向深度学习应用的开源性能库。 该库包括针对英特尔架构处理器和英特尔处理器显卡优化的神经网络的基本构建模块。 MKL-DNN 1.1 发布了,现重新命名为深度神经网络库(DNNL),内容有:
- 使用 TBB 线程改进功能性能,实现与 OpenMP 线程相同的性能
- 改进 INT 8 和 FP32 GEMM 在系统上的性能与英特尔 AVX-512 和英特尔 VNNI 的支持
- 改进了 NHWC 和相应的阻塞布局的 Softmax 性能
- 改进了 RNN 信元性能,降低了编译器矢量化能力对 RNN 性能的依赖性
- 在 RNN 信元中引入 bFloat 16 数据类型支持
- 引入 int8 和 bFloat 16 数据类型对 GPU 功能的支持
MKL-DNN 这个面向性能的库提供了为 Intel IA CPU 和 GPU 优化的神经网络构建块。MKL-DNN/DNNL 旨在与 PyTorch、TensorFlow、ONNX、Chainer、BigDL、Apache MXNet 和其他流行的深度学习应用程序合作。
更多内容见发布说明:
https://github.com/intel/mkl-dnn/releases/tag/v1.1
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 开源 | 深度有趣 - 人工智能实战项目合集
- Facebook开源深度学习推荐模型DLRM
- Uber 开源深度学习分布训练库 Petastorm
- 谷歌开源强化学习深度规划网络 PlaNet
- 阿里开源深度神经网络推理引擎 MNN
- 小米崔宝秋:小米 AIoT 深度拥抱开源
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
C++ Primer Plus
Stephen Prata / 张海龙、袁国忠 / 人民邮电出版社 / 2012-6-19 / 99.00元
C++是在C语言基础上开发的一种集面向对象编程、通用编程和传统的过程化编程于一体的编程语言,是C语言的超集。本书是根据2003年的ISO/ANSI C++标准编写的。通过大量短小精悍的程序详细而全面地阐述了C++的基本概念和技术。全书分为18章和10个附录,分别介绍了C++程序的运行方式、基本数据类型、复合数据类型、循环和关系表达式、分支语句和逻辑操作符、函数重载和函数模板、内存模型和名称空间、类......一起来看看 《C++ Primer Plus》 这本书的介绍吧!