内容简介:Kafka分区与消费者的关系
1. 前言
我们知道,生产者发送消息到主题,消费者订阅主题(以消费者组的名义订阅),而主题下是分区,消息是存储在分区中的,所以事实上生产者发送消息到分区,消费者则从分区读取消息,那么,这里问题来了,生产者将消息投递到哪个分区?消费者组中的消费者实例之间是怎么分配分区的呢?接下来,就围绕着这两个问题一探究竟。
2. 主题的分区数设置
在server.properties配置文件中可以指定一个全局的分区数设置,这是对每个主题下的分区数的默认设置,默认是1。
当然每个主题也可以自己设置分区数量,如果创建主题的时候没有指定分区数量,则会使用server.properties中的设置。
bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic my-topic --partitions 2 --replication-factor 1
在创建主题的时候,可以使用--partitions选项指定主题的分区数量
[root@localhost kafka_2.11-2.0.0]# bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic abc Topic:abc PartitionCount:2 ReplicationFactor:1 Configs: Topic: abc Partition: 0 Leader: 0 Replicas: 0 Isr: 0 Topic: abc Partition: 1 Leader: 0 Replicas: 0 Isr: 0
3. 生产者与分区
首先提出一个问题:生产者将消息投递到分区有没有规律?如果有,那么它是如何决定一条消息该投递到哪个分区的呢?
3.1. 默认的分区策略
The default partitioning strategy:
- If a partition is specified in the record, use it
- If no partition is specified but a key is present choose a partition based on a hash of the key
- If no partition or key is present choose a partition in a round-robin fashion
org.apache.kafka.clients.producer.internals.DefaultPartitioner
默认的分区策略是:
- 如果在发消息的时候指定了分区,则消息投递到指定的分区
- 如果没有指定分区,但是消息的key不为空,则基于key的哈希值来选择一个分区
- 如果既没有指定分区,且消息的key也是空,则用轮询的方式选择一个分区
/** * Compute the partition for the given record. * * @param topic The topic name * @param key The key to partition on (or null if no key) * @param keyBytes serialized key to partition on (or null if no key) * @param value The value to partition on or null * @param valueBytes serialized value to partition on or null * @param cluster The current cluster metadata */ public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { Listpartitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = nextValue(topic); List availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
通过源代码可以更加作证这一点
4. 分区与消费者
消费者以组的名义订阅主题,主题有多个分区,消费者组中有多个消费者实例,那么消费者实例和分区之前的对应关系是怎样的呢?
换句话说,就是组中的每一个消费者负责那些分区,这个分配关系是如何确定的呢?
同一时刻,一条消息只能被组中的一个消费者实例消费
消费者组订阅这个主题,意味着主题下的所有分区都会被组中的消费者消费到,如果按照从属关系来说的话就是,主题下的每个分区只从属于组中的一个消费者,不可能出现组中的两个消费者负责同一个分区。
那么,问题来了。如果分区数大于或者等于组中的消费者实例数,那自然没有什么问题,无非一个消费者会负责多个分区,(PS:当然,最理想的情况是二者数量相等,这样就相当于一个消费者负责一个分区);但是,如果消费者实例的数量大于分区数,那么按照默认的策略(PS:之所以强调默认策略是因为你也可以自定义策略),有一些消费者是多余的,一直接不到消息而处于空闲状态。
话又说回来,假设多个消费者负责同一个分区,那么会有什么问题呢?
我们知道,Kafka它在设计的时候就是要保证分区下消息的顺序,也就是说消息在一个分区中的顺序是怎样的,那么消费者在消费的时候看到的就是什么样的顺序,那么要做到这一点就首先要保证消息是由消费者主动拉取的(pull),其次还要保证一个分区只能由一个消费者负责。倘若,两个消费者负责同一个分区,那么就意味着两个消费者同时读取分区的消息,由于消费者自己可以控制读取消息的offset,就有可能C1才读到2,而C1读到1,C1还没处理完,C2已经读到3了,则会造成很多浪费,因为这就相当于多线程读取同一个消息,会造成消息处理的重复,且不能保证消息的顺序,这就跟主动推送(push)无异。
4.1. 消费者分区分配策略
org.apache.kafka.clients.consumer.internals.AbstractPartitionAssignor
如果是自定义分配策略的话可以继承AbstractPartitionAssignor这个类,它默认有3个实现
4.1.1. range
range策略对应的实现类是org.apache.kafka.clients.consumer.RangeAssignor
这是默认的分配策略
可以通过消费者配置中partition.assignment.strategy参数来指定分配策略,它的值是类的全路径,是一个数组
/** * The range assignor works on a per-topic basis. For each topic, we lay out the available partitions in numeric order * and the consumers in lexicographic order. We then divide the number of partitions by the total number of * consumers to determine the number of partitions to assign to each consumer. If it does not evenly * divide, then the first few consumers will have one extra partition. * * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions, * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2. * * The assignment will be: * C0: [t0p0, t0p1, t1p0, t1p1] * C1: [t0p2, t1p2] */
range策略是基于每个主题的
对于每个主题,我们以数字顺序排列可用分区,以字典顺序排列消费者。然后,将分区数量除以消费者总数,以确定分配给每个消费者的分区数量。如果没有平均划分(PS:除不尽),那么最初的几个消费者将有一个额外的分区。
简而言之,就是,
1、range分配策略针对的是主题(PS:也就是说,这里所说的分区指的某个主题的分区,消费者值的是订阅这个主题的消费者组中的消费者实例)
2、首先,将分区按数字顺序排行序,消费者按消费者名称的字典序排好序
3、然后,用分区总数除以消费者总数。如果能够除尽,则皆大欢喜,平均分配;若除不尽,则位于 排序 前面的消费者将多负责一个分区
例如,假设有两个消费者C0和C1,两个主题t0和t1,并且每个主题有3个分区,分区的情况是这样的:t0p0,t0p1,t0p2,t1p0,t1p1,t1p2
那么,基于以上信息,最终消费者分配分区的情况是这样的:
C0: [t0p0, t0p1, t1p0, t1p1]
C1: [t0p2, t1p2]
为什么是这样的结果呢?
因为,对于主题t0,分配的结果是C0负责P0和P1,C1负责P2;对于主题t2,也是如此,综合起来就是这个结果
上面的过程用图形表示的话大概是这样的:
阅读代码,更有助于理解:
public Map> assign(Map partitionsPerTopic, Map subscriptions) { // 主题与消费者的映射 Map > consumersPerTopic = consumersPerTopic(subscriptions); Map > assignment = new HashMap<>(); for (String memberId : subscriptions.keySet()) assignment.put(memberId, new ArrayList ()); for (Map.Entry > topicEntry : consumersPerTopic.entrySet()) { String topic = topicEntry.getKey(); // 主题 List consumersForTopic = topicEntry.getValue(); // 消费者列表 // partitionsPerTopic表示主题和分区数的映射 // 获取主题下有多少个分区 Integer numPartitionsForTopic = partitionsPerTopic.get(topic); if (numPartitionsForTopic == null) continue; // 消费者按字典序排序 Collections.sort(consumersForTopic); // 分区数量除以消费者数量 int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size(); // 取模,余数就是额外的分区 int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size(); List partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic); for (int i = 0, n = consumersForTopic.size(); i < n; i++) { int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition); int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1); // 分配分区 assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length)); } } return assignment; }
4.1.2. roundrobin(轮询)
roundronbin分配策略的具体实现是org.apache.kafka.clients.consumer.RoundRobinAssignor
/** * The round robin assignor lays out all the available partitions and all the available consumers. It * then proceeds to do a round robin assignment from partition to consumer. If the subscriptions of all consumer * instances are identical, then the partitions will be uniformly distributed. (i.e., the partition ownership counts * will be within a delta of exactly one across all consumers.) * * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions, * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2. * * The assignment will be: * C0: [t0p0, t0p2, t1p1] * C1: [t0p1, t1p0, t1p2] * * When subscriptions differ across consumer instances, the assignment process still considers each * consumer instance in round robin fashion but skips over an instance if it is not subscribed to * the topic. Unlike the case when subscriptions are identical, this can result in imbalanced * assignments. For example, we have three consumers C0, C1, C2, and three topics t0, t1, t2, * with 1, 2, and 3 partitions, respectively. Therefore, the partitions are t0p0, t1p0, t1p1, t2p0, * t2p1, t2p2. C0 is subscribed to t0; C1 is subscribed to t0, t1; and C2 is subscribed to t0, t1, t2. * * Tha assignment will be: * C0: [t0p0] * C1: [t1p0] * C2: [t1p1, t2p0, t2p1, t2p2] */
轮询分配策略是基于所有可用的消费者和所有可用的分区的
与前面的range策略最大的不同就是它不再局限于某个主题
如果所有的消费者实例的订阅都是相同的,那么这样最好了,可用统一分配,均衡分配
例如,假设有两个消费者C0和C1,两个主题t0和t1,每个主题有3个分区,分别是t0p0,t0p1,t0p2,t1p0,t1p1,t1p2
那么,最终分配的结果是这样的:
C0: [t0p0, t0p2, t1p1]
C1: [t0p1, t1p0, t1p2]
用图形表示大概是这样的:
假设,组中每个消费者订阅的主题不一样,分配过程仍然以轮询的方式考虑每个消费者实例,但是如果没有订阅主题,则跳过实例。当然,这样的话分配肯定不均衡。
什么意思呢?也就是说,消费者组是一个逻辑概念,同组意味着同一时刻分区只能被一个消费者实例消费,换句话说,同组意味着一个分区只能分配给组中的一个消费者。事实上,同组也可以不同订阅,这就是说虽然属于同一个组,但是它们订阅的主题可以是不一样的。
例如,假设有3个主题t0,t1,t2;其中,t0有1个分区p0,t1有2个分区p0和p1,t2有3个分区p0,p1和p2;有3个消费者C0,C1和C2;C0订阅t0,C1订阅t0和t1,C2订阅t0,t1和t2。那么,按照轮询分配的话,C0应该负责
首先,肯定是轮询的方式,其次,比如说有主题t0,t1,t2,它们分别有1,2,3个分区,也就是t0有1个分区,t1有2个分区,t2有3个分区;有3个消费者分别从属于3个组,C0订阅t0,C1订阅t0和t1,C2订阅t0,t1,t2;那么,按照轮询分配的话,C0应该负责t0p0,C1应该负责t1p0,其余均由C2负责。
上述过程用图形表示大概是这样的:
为什么最后的结果是
C0: [t0p0]
C1: [t1p0]
C2: [t1p1, t2p0, t2p1, t2p2]
这是因为,按照轮询t0p1由C0负责,t1p0由C1负责,由于同组,C2只能负责t1p1,由于只有C2订阅了t2,所以t2所有分区由C2负责,综合起来就是这个结果
细想一下可以发现,这种情况下跟range分配的结果是一样的
5. 测试代码
xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0modelVersion> <groupId>com.cjs.examplegroupId> <artifactId>kafka-demoartifactId> <version>0.0.1-SNAPSHOTversion> <packaging>jarpackaging> <name>kafka-demoname> <description>description> <parent> <groupId>org.springframework.bootgroupId> <artifactId>spring-boot-starter-parentartifactId> <version>2.0.5.RELEASEversion> <relativePath/> parent> <properties> <project.build.sourceEncoding>UTF-8project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8project.reporting.outputEncoding> <java.version>1.8java.version> properties> <dependencies> <dependency> <groupId>org.springframework.bootgroupId> <artifactId>spring-boot-starter-webartifactId> dependency> <dependency> <groupId>org.springframework.kafkagroupId> <artifactId>spring-kafkaartifactId> dependency> <dependency> <groupId>org.springframework.bootgroupId> <artifactId>spring-boot-starter-testartifactId> <scope>testscope> dependency> dependencies> <build> <plugins> <plugin> <groupId>org.springframework.bootgroupId> <artifactId>spring-boot-maven-pluginartifactId> plugin> plugins> build> project>
package com.cjs.kafka.producer; import org.apache.kafka.clients.producer.*; import java.util.Properties; public class HelloProducer { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "192.168.1.133:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producerproducer = new KafkaProducer (props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord ("abc", Integer.toString(i), Integer.toString(i)), new Callback() { @Override public void onCompletion(RecordMetadata recordMetadata, Exception e) { if (null != e) { e.printStackTrace(); }else { System.out.println("callback: " + recordMetadata.topic() + " " + recordMetadata.partition() + " " + recordMetadata.offset()); } } }); } producer.close(); } }
package com.cjs.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays; import java.util.Properties; public class HelloConsumer { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "192.168.1.133:9092"); props.put("group.id", "test"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); // props.put("partition.assignment.strategy", "org.apache.kafka.clients.consumer.RoundRobinAssignor"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumerconsumer = new KafkaConsumer (props); consumer.subscribe(Arrays.asList("foo", "bar", "abc")); while (true) { ConsumerRecords records = consumer.poll(100); for (ConsumerRecord record : records) { System.out.printf("partition = %s, offset = %d, key = %s, value = %s%n", record.partition(), record.offset(), record.key(), record.value()); } } } }
6. 参考
http://kafka.apache.org/documentation/#consumerconfigs
https://blog.csdn.net/feelwing1314/article/details/81097167
https://blog.csdn.net/OiteBody/article/details/80595971
https://blog.csdn.net/YChenFeng/article/details/74980531
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Kafka分区与消费者的关系
- Kafka分区与消费者的关系
- PHPKafka 1.1.1 发布,支持消费者分区分配策略之粘性分配等功能
- Kafka消费者的偏移量和高级/简单消费者
- 十一贝:航延险智能判定,公平消费环境惠及消费者
- Kafka消费者增量拉取
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
时间的朋友2018
罗振宇 / 中信出版集团 / 2019-1
2018年,有点不一样。 从年头到现在,各种信息扑面而来。不管你怎么研判这些信息的深意,有一点是有共识的:2018,我们站在了一个时代的门槛上,陌生,崭新。就像一个少年长大了,有些艰困必须承当,有些道路只能独行。 用经济学家的话说,2018年,我们面对的是一次巨大的“不确定性”。 所谓“不确定性”,就是无法用过去的经验判断未来事情发生的概率。所以,此时轻言乐观、悲观,都没有什么意......一起来看看 《时间的朋友2018》 这本书的介绍吧!