你应该避免的8种常见SQL错误用法!

栏目: 数据库 · 发布时间: 5年前

内容简介:扫描下方二维码

你应该避免的8种常见 <a href='https://www.codercto.com/topics/18630.html'>SQL</a> 错误用法!

扫描下方二维码 试读

你应该避免的8种常见SQL错误用法!

专栏详细目录 请移步至文末

来源:https://dwz.cn/cgAPOWPx

1、LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。

比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件 排序 都能有效的利用到索引,性能迅速提升。


 

SELECT *

FROM operation

WHERE type = 'SQLStats'

AND name = 'SlowLog'

ORDER BY create_time

LIMIT 1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。

但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是 程序员 偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:


 

SELECT *

FROM operation

WHERE type = 'SQLStats'

AND name = 'SlowLog'

AND create_time > '2017-03-16 14:00:00'

ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:


 

mysql> explain extended SELECT *

> FROM my_balance b

> WHERE b.bpn = 14000000123

> AND b.isverified IS NULL ;

mysql> show warnings;

| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除

虽然 MySQL 5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。


 

UPDATE operation o

SET status = 'applying'

WHERE o.id IN (SELECT id

FROM (SELECT o.id,

o.status

FROM operation o

WHERE o.group = 123

AND o.status NOT IN ( 'done' )

ORDER BY o.parent,

o.id

LIMIT 1) t);

执行计划:


 

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |

| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |

| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。


 

UPDATE operation o

JOIN (SELECT o.id,

o.status

FROM operation o

WHERE o.group = 123

AND o.status NOT IN ( 'done' )

ORDER BY o.parent,

o.id

LIMIT 1) t

ON o.id = t.id

SET status = 'applying'

执行计划简化为:


 

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

| 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables |

| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。


 

SELECT *

FROM my_order o

INNER JOIN my_appraise a ON a.orderid = o.id

ORDER BY a.is_reply ASC,

a.appraise_time DESC

LIMIT 0, 20

执行计划显示为全表扫描:


 

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+

| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |

| 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL |

+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。


 

SELECT *

FROM ((SELECT *

FROM my_order o

INNER JOIN my_appraise a

ON a.orderid = o.id

AND is_reply = 0

ORDER BY appraise_time DESC

LIMIT 0, 20)

UNION ALL

(SELECT *

FROM my_order o

INNER JOIN my_appraise a

ON a.orderid = o.id

AND is_reply = 1

ORDER BY appraise_time DESC

LIMIT 0, 20)) t

ORDER BY is_reply ASC,

appraisetime DESC

LIMIT 20;

5、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:


 

SELECT *

FROM my_neighbor n

LEFT JOIN my_neighbor_apply sra

ON n.id = sra.neighbor_id

AND sra.user_id = 'xxx'

WHERE n.topic_status < 4

AND EXISTS(SELECT 1

FROM message_info m

WHERE n.id = m.neighbor_id

AND m.inuser = 'xxx')

AND n.topic_type <> 5

执行计划为:


 

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |

| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |

| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where |

+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。


 

SELECT *

FROM my_neighbor n

INNER JOIN message_info m

ON n.id = m.neighbor_id

AND m.inuser = 'xxx'

LEFT JOIN my_neighbor_apply sra

ON n.id = sra.neighbor_id

AND sra.user_id = 'xxx'

WHERE n.topic_status < 4

AND n.topic_type <> 5

新的执行计划:


 

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition |

| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |

| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  • 聚合子查询;

  • 含有 LIMIT 的子查询;

  • UNION 或 UNION ALL 子查询;

  • 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:


 

SELECT *

FROM (SELECT target,

Count(*)

FROM operation

GROUP BY target) t

WHERE target = 'rm-xxxx'


 

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

| 1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where |

| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:


 

SELECT target,

Count(*)

FROM operation

WHERE target = 'rm-xxxx'

GROUP BY target

执行计划变为:


 

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于 MySQL 外部条件不能下推的详细解释说明请参考文章:

http://mysql.taobao.org/monthly/2016/07/08

7、提前缩小范围

先上初始 SQL 语句:


 

SELECT *

FROM my_order o

LEFT JOIN my_userinfo u

ON o.uid = u.uid

LEFT JOIN my_productinfo p

ON o.pid = p.pid

WHERE ( o.display = 0 )

AND ( o.ostaus = 1 )

ORDER BY o.selltime DESC

LIMIT 0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。


 

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |

| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |

| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。


 

SELECT *

FROM (

SELECT *

FROM my_order o

WHERE ( o.display = 0 )

AND ( o.ostaus = 1 )

ORDER BY o.selltime DESC

LIMIT 0, 15

) o

LEFT JOIN my_userinfo u

ON o.uid = u.uid

LEFT JOIN my_productinfo p

ON o.pid = p.pid

ORDER BY o.selltime DESC

limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。


 

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |

| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |

| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |

| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):


 

SELECT a.*,

c.allocated

FROM (

SELECT resourceid

FROM my_distribute d

WHERE isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY salecode limit 20) a

LEFT JOIN

(

SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

FROM my_resources

GROUP BY resourcesid) c

ON a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。


 

SELECT a.*,

c.allocated

FROM (

SELECT resourceid

FROM my_distribute d

WHERE isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY salecode limit 20) a

LEFT JOIN

(

SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

FROM my_resources r,

(

SELECT resourceid

FROM my_distribute d

WHERE isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY salecode limit 20) a

WHERE r.resourcesid = a.resourcesid

GROUP BY resourcesid) c

ON a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:


 

WITH a AS

(

SELECT resourceid

FROM my_distribute d

WHERE isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY salecode limit 20)

SELECT a.*,

c.allocated

FROM a

LEFT JOIN

(

SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

FROM my_resources r,

a

WHERE r.resourcesid = a.resourcesid

GROUP BY resourcesid) c

ON a.resourceid = c.resourcesid

总结

数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。

编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

End

《从 开始带你成为 JVM 实战 高手》 详细目录:

你应该避免的8种常见SQL错误用法! 你应该避免的8种常见SQL错误用法! 你应该避免的8种常见SQL错误用法! 你应该避免的8种常见SQL错误用法!

为您推荐

  1. 如何设计一个百万级用户的抽奖系统?

  2. 阿里二面:设计一个电商平台积分兑换系统!

  3. 扎心一问!你凭什么成为top1%的 Java 工程师?

  4. 【干货走一波】千万级用户的大型网站,应该如何设计其高并发架构?

  5. PK光明顶?江湖上流传的几大消息队列门派,到底有什么本质区别?

  6. 扒一扒 JVM 的垃圾回收机制,拿大厂offer少不了它!

  7. 面试阿里?如果对别人开源的Rocket MQ了如指掌,岂不是很加分?

  8. 百度、腾讯热门面试题:聊聊Unix与Java的IO模型?(含详细解析)

  9. 35岁的大龄 码农 们,如何才能不被社会淘汰掉?

  10. 一步一图,带你走进Netty的世界!

  11. 想要去阿里面试?你必须得跨过JVM这道坎!

  12. 你连Nginx怎么转发给你请求都说不清楚,还好意思说自己不是CRUD工程师?

长按下图二维码,即刻关注【 狸猫技术窝

阿里、京东、美团、字节跳动

顶尖技术专家 坐镇

为IT人打造一个 “有温度” 的技术窝!

你应该避免的8种常见SQL错误用法!


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

UNIX环境高级编程

UNIX环境高级编程

W.Richard Stevens Stephen A.Rago、Stephen A. Rago / 人民邮电出版社 / 2006-2 / 99.00元

本书是被誉为UNIX编程“圣经”的Advanced Programming in the UNIX Environment一书的更新版。在本书第一版出版后的十几年中,UNIX行业已经有了巨大的变化,特别是影响UNIX编程接口的有关标准变化很大。本书在保持了前一版的风格的基础上,根据最新的标准对内容进行了修订和增补,反映了最新的技术发展。书中除了介绍UNIX文件和目录、标准I/O库、系统数据文件和信......一起来看看 《UNIX环境高级编程》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具