Paper List
- A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning
- End-to-End Supervised Product Quantization for Image Search and Retrieval
- Ranked List Loss for Deep Metric Learning
- On Learning Density Aware Embeddings
- Stochastic Class-based Hard Example Mining for Deep Metric Learning
- Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
- Deep Metric Learning to Rank
- Learning Metrics from Teachers: Compact Networks for Image Embedding
- Deep Embedding Learning with Discriminative Sampling Policy
- Divide and Conquer the Embedding Space for Metric Learning
- Unsupervised Embedding Learning via Invariant and Spreading Instance Feature
- Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
- Deep Asymmetric Metric Learning via Rich Relationship Mining
- Hardness-Aware Deep Metric Learning
数据集及评价指标:
CUB-200-2011
Method | R@1 | R@2 | R@4 | R@8 |
1. Discriminative | 51.43 | 64.23 | 74.31 | 82.83 |
3.RLL-(L,M,H) | 61.3 | 72.7 | 82.7 | 89.4 |
5.SCHE | 66.2 | 76.3 | 84.1 | 90.1 |
6.MS | 65.7 | 77.0 | 86.3 | 91.2 |
9. DE-DSP (N-pair) | 53.6 | 65.5 | 76.9 | - |
10. DCES | 65.9 | 76.6 | 84.4 | 90.6 |
12. DSML | 51.6 | 54.9 | - | - |
13. RRM | 55.1 | 66.5 | 76.8 | 85.3 |
14. HDML | 53.7 | 65.7 | 76.7 | 85.7 |
CAR196
Method | R@1 | R@2 | R@4 | R@8 |
1. Discriminative | 68.31 | 78.21 | 85.22 | 91.18 |
3.RLL-(L,M,H) | 82.1 | 89.3 | 93.7 | 96.7 |
5.SCHE | 91.7 | 95.3 | 97.3 | 98.4 |
6.MS | 84.1 | 90.4 | 94.0 | 96.5 |
9. DE-DSP (N-pair) | 72.9 | 81.6 | 88.8 | - |
10. DCES | 84.6 | 90.7 | 94.1 | 96.5 |
12. DSML | 49.1 | 52.4 | - | - |
13. RRM | 73.5 | 82.6 | 89.1 | 93.5 |
14. HDML | 79.1 | 87.1 | 92.1 | 95.5 |
SOP
Method | R@1 | R@10 | R@100 |
3.RLL-(L,M,H) | 79.8 | 91.3 | 96.3 |
5.SCHE | 77.6 | 89.1 | 94.7 |
6.MS | 78.2 | 90.5 | 96.0 |
7.FastAP | 75.8 | 89.1 | 95.4 |
9. DE-DSP (N-pair) | 68.9 | 84.0 | 92.6 |
10. DCES | 75.9 | 88.4 | 94.9 |
13. RRM | 69.7 | 85.2 | 93.2 |
14. HDML | 68.7 | 83.2 | 92.4 |
In-shop
Method | R@1 | R@10 | R@20 | R@30 |
5.SCHE | 91.9 | 98.0 | 98.7 | 99.0 |
6.MS | 89.7 | 97.9 | 98.5 | 98.8 |
7.FastAP | 90.9 | 97.7 | 98.5 | 98.8 |
9. DE-DSP (N-pair) | 78.6 | 93.8 | 95.5 | 96.2 |
10. DCES | 85.7 | 95.5 | 96.9 | 97.5 |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 【docker 笔记】dockerize 相关整理
- JVM的相关知识整理和学习
- 原 荐 vue打包相关细节整理
- 阿里、字节:一套高效的 iOS 面试题之我整理的答案之 runtime 相关问题(一)
- 照片整理系列二 —— 照片整理及归档的辛酸历程
- 我自己整理的码农周刊一周分享整理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法导论
[美] Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest、Clifford Stein / 高等教育出版社 / 2002-5 / 68.00元
《算法导论》自第一版出版以来,已经成为世界范围内广泛使用的大学教材和专业人员的标准参考手册。 这本书全面论述了算法的内容,从一定深度上涵盖了算法的诸多方面,同时其讲授和分析方法又兼顾了各个层次读者的接受能力。各章内容自成体系,可作为独立单元学习。所有算法都用英文和伪码描述,使具备初步编程经验的人也可读懂。全书讲解通俗易懂,且不失深度和数学上的严谨性。第二版增加了新的章节,如算法作用、概率分析......一起来看看 《算法导论》 这本书的介绍吧!