CVPR2019 Metric Learning、Embedding、Retrieval 相关论文阅读及整理

栏目: 编程工具 · 发布时间: 5年前

Paper List

  1. A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning
  2. End-to-End Supervised Product Quantization for Image Search and Retrieval
  3. Ranked List Loss for Deep Metric Learning
  4. On Learning Density Aware Embeddings
  5. Stochastic Class-based Hard Example Mining for Deep Metric Learning
  6. Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
  7. Deep Metric Learning to Rank
  8. Learning Metrics from Teachers: Compact Networks for Image Embedding
  9. Deep Embedding Learning with Discriminative Sampling Policy
  10. Divide and Conquer the Embedding Space for Metric Learning
  11. Unsupervised Embedding Learning via Invariant and Spreading Instance Feature
  12. Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
  13. Deep Asymmetric Metric Learning via Rich Relationship Mining
  14. Hardness-Aware Deep Metric Learning

数据集及评价指标:

CUB-200-2011

Method R@1 R@2 R@4 R@8
1. Discriminative 51.43 64.23 74.31 82.83
3.RLL-(L,M,H) 61.3 72.7 82.7 89.4
5.SCHE 66.2 76.3 84.1 90.1
6.MS 65.7 77.0 86.3 91.2
9. DE-DSP (N-pair) 53.6 65.5 76.9 -
10. DCES 65.9 76.6 84.4 90.6
12. DSML 51.6 54.9 - -
13. RRM 55.1 66.5 76.8 85.3
14. HDML 53.7 65.7 76.7 85.7

CAR196

Method R@1 R@2 R@4 R@8
1. Discriminative 68.31 78.21 85.22 91.18
3.RLL-(L,M,H) 82.1 89.3 93.7 96.7
5.SCHE 91.7 95.3 97.3 98.4
6.MS 84.1 90.4 94.0 96.5
9. DE-DSP (N-pair) 72.9 81.6 88.8 -
10. DCES 84.6 90.7 94.1 96.5
12. DSML 49.1 52.4 - -
13. RRM 73.5 82.6 89.1 93.5
14. HDML 79.1 87.1 92.1 95.5

SOP

Method R@1 R@10 R@100
3.RLL-(L,M,H) 79.8 91.3 96.3
5.SCHE 77.6 89.1 94.7
6.MS 78.2 90.5 96.0
7.FastAP 75.8 89.1 95.4
9. DE-DSP (N-pair) 68.9 84.0 92.6
10. DCES 75.9 88.4 94.9
13. RRM 69.7 85.2 93.2
14. HDML 68.7 83.2 92.4

In-shop

Method R@1 R@10 R@20 R@30
5.SCHE 91.9 98.0 98.7 99.0
6.MS 89.7 97.9 98.5 98.8
7.FastAP 90.9 97.7 98.5 98.8
9. DE-DSP (N-pair) 78.6 93.8 95.5 96.2
10. DCES 85.7 95.5 96.9 97.5

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

爆款文案

爆款文案

关健明 / 北京联合出版公司 / 2017-12 / 42.00元

爆款10W+文案是怎么写出来的?前奥美金牌广告人、知乎25K高赞回答者关健明力作《爆款文案》解构文案打动人的4大黄金法则,公开18种文案写法,75篇实战案例,100多幅释义插图,透露把文案变成“印钞机”的私密武器,手把手教你写出爆款销售力。 市面上有很多大而全的文案书,往往比较宽泛,本书只聚焦一个点:文案如何卖掉产品,赚到钱。 前奥美金牌广告人、知乎25K高赞回答者:关键明,擅长撰写销......一起来看看 《爆款文案》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试