CVPR2019 Metric Learning、Embedding、Retrieval 相关论文阅读及整理

栏目: 编程工具 · 发布时间: 6年前

Paper List

  1. A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning
  2. End-to-End Supervised Product Quantization for Image Search and Retrieval
  3. Ranked List Loss for Deep Metric Learning
  4. On Learning Density Aware Embeddings
  5. Stochastic Class-based Hard Example Mining for Deep Metric Learning
  6. Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
  7. Deep Metric Learning to Rank
  8. Learning Metrics from Teachers: Compact Networks for Image Embedding
  9. Deep Embedding Learning with Discriminative Sampling Policy
  10. Divide and Conquer the Embedding Space for Metric Learning
  11. Unsupervised Embedding Learning via Invariant and Spreading Instance Feature
  12. Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
  13. Deep Asymmetric Metric Learning via Rich Relationship Mining
  14. Hardness-Aware Deep Metric Learning

数据集及评价指标:

CUB-200-2011

Method R@1 R@2 R@4 R@8
1. Discriminative 51.43 64.23 74.31 82.83
3.RLL-(L,M,H) 61.3 72.7 82.7 89.4
5.SCHE 66.2 76.3 84.1 90.1
6.MS 65.7 77.0 86.3 91.2
9. DE-DSP (N-pair) 53.6 65.5 76.9 -
10. DCES 65.9 76.6 84.4 90.6
12. DSML 51.6 54.9 - -
13. RRM 55.1 66.5 76.8 85.3
14. HDML 53.7 65.7 76.7 85.7

CAR196

Method R@1 R@2 R@4 R@8
1. Discriminative 68.31 78.21 85.22 91.18
3.RLL-(L,M,H) 82.1 89.3 93.7 96.7
5.SCHE 91.7 95.3 97.3 98.4
6.MS 84.1 90.4 94.0 96.5
9. DE-DSP (N-pair) 72.9 81.6 88.8 -
10. DCES 84.6 90.7 94.1 96.5
12. DSML 49.1 52.4 - -
13. RRM 73.5 82.6 89.1 93.5
14. HDML 79.1 87.1 92.1 95.5

SOP

Method R@1 R@10 R@100
3.RLL-(L,M,H) 79.8 91.3 96.3
5.SCHE 77.6 89.1 94.7
6.MS 78.2 90.5 96.0
7.FastAP 75.8 89.1 95.4
9. DE-DSP (N-pair) 68.9 84.0 92.6
10. DCES 75.9 88.4 94.9
13. RRM 69.7 85.2 93.2
14. HDML 68.7 83.2 92.4

In-shop

Method R@1 R@10 R@20 R@30
5.SCHE 91.9 98.0 98.7 99.0
6.MS 89.7 97.9 98.5 98.8
7.FastAP 90.9 97.7 98.5 98.8
9. DE-DSP (N-pair) 78.6 93.8 95.5 96.2
10. DCES 85.7 95.5 96.9 97.5

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

电商运营之道:策略、方法与实践

电商运营之道:策略、方法与实践

吴伟定、姚金刚、周振兴、郑琰 / 机械工业出版社 / 2015-9-1 / 49

电商运营之道:策略、方法与实践是一本电商的运营指南,适合所有的电商从业人员阅读,也适合打算进入或打算在电商行业创业的读者朋友阅读。分别从策略、方法与实践三个方面全景式展示电商运营的内在商业规律与管理逻辑。一起来看看 《电商运营之道:策略、方法与实践》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具