重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

栏目: 数据库 · 发布时间: 5年前

内容简介:几个月前,红色石头发文介绍过一份在 GitHub 上非常火爆的项目,名为:DeepLearning-500-questions,中文译名:深度学习 500 问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了 500 个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。该热门项目一直在不断更新,作者本着开源精神,不断有新的贡献者在完善项目。如今,全书已达 50 余万字,分为 18 个章节。首先,直接放上项目地址:

几个月前,红色石头发文介绍过一份在 GitHub 上非常火爆的项目,名为:DeepLearning-500-questions,中文译名:深度学习 500 问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了 500 个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。

该热门项目一直在不断更新,作者本着开源精神,不断有新的贡献者在完善项目。如今,全书已达 50 余万字,分为 18 个章节。

首先,直接放上项目地址:

https://github.com/scutan90/DeepLearning-500-questions

目前该项目已有 2.6w stars 了!只要是内容都是干货,超全!

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

下面,我们来看一看该项目有哪些硬核干货吧!

全书目录

该项目更确切地说是一本深度学习面试手册,500 问,非常详细。全书共分为 18 章,近 50 万字,目录如下:

  • 数学基础
  • 机器学习基础

  • 深度学习基础

  • 经典网络

  • 卷积神经网络(CNN)

  • 循环神经网络(RNN)

  • 生成对抗网络(GAN)

  • 目标检测

  • 图像分割

  • 强化学习

  • 迁移学习

  • 网络搭建及训练

  • 优化算法

  • 超参数调试

  • GPU 和框架选型

  • 自然语言处理(NLP)

  • 模型压缩、加速及移动端部署

  • 后端架构选型、离线及实时计算

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

主要内容

全书内容非常丰富,持续更新和完善中。下面我们列举一些知识点给读者一睹为快!

1. 各种常见算法(第 2 章)

日常使用机器学习的任务中,我们经常会遇见各种算法,如下图所示。

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

2. 支持向量机(第 2 章)

支持向量:在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量。

支持向量机(Support Vector Machine,SVM):其含义是通过支持向量运算的分类器。

在一个二维环境中,其中点R,S,G点和其它靠近中间黑线的点可以看作为支持向量,它们可以决定分类器,即黑线的具体参数。

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

支持向量机是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是边界最大化,最终转化为一个凸二次规划问题来求解。

3. 常用的神经网络结构(第 3 章)

下图包含了大部分常用的模型:

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

4. 多分类 Softmax(第 3 章)

下图包含了 Softmax 层的详细过程和推导:

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

5. 经典网络结构(第 4 章)

本章主要介绍几个具有代表性的神经网络模型。

LeNet-5

LeNet-5 模型是 Yann LeCun 于 1998 年提出来的,它是第一个成功应用于数字识别问题的卷积神经网络。在 MNIST 数据中,它的准确率达到大约 99.2%。典型的 LeNet-5 结构包含卷积层、池化层和全连接层,顺序一般是:卷积层->池化层->卷积层->池化层->全连接层->全连接层->输出层。

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

同时给出了 LeNet-5 的网络参数配置:

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

AlexNet

AlexNet 是 2012 年 ImageNet 竞赛冠军获得者 Hinton 和他的学生 Alex Krizhevsky 设计的。AlexNet 可以直接对彩色的大图片进行处理,对于传统的机器学习分类算法而言,它的性能相当的出色。AlexNet 是由 5 个卷积层和 3 个全连接层组成,顺序一般是:卷积层->池化层->卷积层->池化层->卷积层->卷积层->卷积层->池化层->全连接层->全连接层->输出层。

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

AlexNet 的网络参数配置:

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

6. 全连接、局部连接、全卷积与局部卷积(第 5 章)

全连接、局部连接、全卷积与局部卷积的对比和解释如下:

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)

评价

整个项目包含的内容非常多,这里就不再赘述。干货很硬,大家不要错过了这份资源。再次附上链接:

https://github.com/scutan90/DeepLearning-500-questions

总的来说,这份资源不是一本深度学习的系统教材,而是一份完整的、详细的深度学习知识点精炼手册。对于面试、自我测验来说非常有帮助!一句话:硬核干货,值得收藏!

资源下载

最后,这份完整的深度学习 500 问资源我已经为大家打包完毕!需要的可以按照以下方式获取:

1.扫描下方二维码关注 “AI有道” 公众号

2.公众号后台回复关键词: DL500

重磅!深度学习 500 问已更新,GitHub 2.6W 星(附完整下载)


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

企业IT架构转型之道:阿里巴巴中台战略思想与架构实战

企业IT架构转型之道:阿里巴巴中台战略思想与架构实战

钟华 / 机械工业出版社 / 2017-4-1 / 79

在当今整个中国社会都处于互联网转型的浪潮中,不管是政府职能单位、业务规模庞大的央企,还是面临最激烈竞争的零售行业都处于一个重要的转折点,这个转折对企业业务模式带来了冲击,当然也给企业的信息中心部门带来了挑战:如何构建IT系统架构更好地满足互联网时代下企业业务发展的需要。阿里巴巴的共享服务理念以及企业级互联网架构建设的思路,给这些企业带来了不少新的思路,这也是我最终决定写这本书的最主要原因。本书从阿......一起来看看 《企业IT架构转型之道:阿里巴巴中台战略思想与架构实战》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

在线进制转换器
在线进制转换器

各进制数互转换器