刷新COCO目标检测纪录!谷歌只靠AI扩增数据,就把一个模型变成SOTA,已开源

栏目: 软件资讯 · 发布时间: 5年前

内容简介:同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流

加入极市 专业CV交流群,与 6000+来自腾讯,华为,百度,北大,清华,中科院 等名企名校视觉开发者互动交流!更有机会与 李开复老师 等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流 点击文末“ 阅读原文 ”立刻申请入群~

极市导读】自从团队用机器学习解锁了特别的数据扩增策略,再用自动扩增来的新数据集训练目标检测模型,事情就完全不同了。

本文转载自公众号:量子位

刷新COCO目标检测纪录!谷歌只靠AI扩增数据,就把一个模型变成SOTA,已开源

谷歌大脑Quoc Le团队,又训练出了一只地表最强的模型。

这是一个目标检测模型,从前并不是最强大。

但自从团队用机器学习解锁了特别的 数据扩增策略 ,再用自动扩增来的新数据集训练目标检测模型,事情就完全不同了。

注意:目标检测和分类不一样,分类不需要标注边界框,而目标检测需要。

刷新COCO目标检测纪录!谷歌只靠AI扩增数据,就把一个模型变成SOTA,已开源

左边是自动扩增数据,右边是成绩提升

模型在 COCO 目标检测任务上,拿到了50.7 mAP的最高分,刷新从前的纪录。

谷歌的方法,并没有改变模型本身,但有效提升了准确率,+2.3 mAP以上。

团队还强调,AI在COCO数据集里学到的扩增策略, 直接迁移到其他数据集上 ,同样可以提升准确率。

现在,算法已经开源了,AI学到的扩增策略也在里面。

是怎样的扩增策略?

论文写到,这里的数据扩增只涉及了一些简单变换 (Simple Transformations) :

有应用在整张图片上、但不会影响边界框的那种变换,比如从图像分类里借来的 颜色变换  (Color Transformations)。

也有不影响整张图片、但改变边界框位置的那种变换,比如图像平移 (Translating) 或剪切 (Shearing) 。

还有只针对边界框里的目标,而进行的变换。

注意,这些变换只用在训练过程中,不会用到测试环节里。

研究人员说,当变换的数量越来越庞大的时候,就很难手动把它们有效组合到一起了。

所以,就要用机器学习,搜索出更适合目标检测任务的组合策略。

思路是这样的:

团队把 数据扩增搜索 (Data Augmentation Search) 看做一个离散的优化问题,优化的是模型的 泛化表现

在自家的另一篇论文 (arXiv:1805.09501) 基础上,把重点转移到针对目标检测的扩增策略上。

比起图像分类任务的数据扩增,目标检测的难点在于, 要保持边界框和发生形变的图像之间的一致性 (Consistency) 。

而边界框的标注,也为数据扩增提供了一种新的方式: 只在边界框里面修改图像。 就像上文讲的那样。

另外,团队还探索了在图片发生 几何变换 (Geometric Transformations) 的情况下,怎样去改变边界框的位置。

具体方法是这样的:

把扩增策略定义成一组无序的 子策略  (Sub-Policy) 。

在训练过程中,每个子策略都会被随机选中,应用到当前的图片里去。

每个子策略里,有N个图片变换,依次在同一张图上进行。

要把这个搜索过程,变成一个离散的优化问题,就要创建一个搜索空间。

空间里面,有5个种策略,每种子策略有2种图像变换运算。

另外,每个运算还和两个超参数相关联,一个是代表应用这个运算的可能性 (Probability) ,二是这个运算的大小 (Magnitude) 。

初步实验之后,团队定下了22种图像变换运算。

学习完成的子策略,成效是这样的:

刷新COCO目标检测纪录!谷歌只靠AI扩增数据,就把一个模型变成SOTA,已开源

肉眼可见,成效显著。

一是在COCO目标检测中,以 50.7 mAP 拔得头筹,(比策略训练前) 提升了 2.3 mAP

二是在 PASCAL VOC 目标检测中,提升了2.7 mAP。

也就是说,在COCO上训练好的策略,直接搬到其他数据集上也有效。

团队说,这个方法尤其适合在小数据集中 避免过拟合

现在,代码开源了,你也要试试么?

论文传送门:

https://arxiv.org/abs/1906.11172

代码传送门:

https://github.com/tensorflow/tpu/tree/master/models/official/detection

(完)

点击左下角 阅读原文 ”, 即可申请加入极市 目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群, 更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流, 一起来让思想之光照的更远吧~

刷新COCO目标检测纪录!谷歌只靠AI扩增数据,就把一个模型变成SOTA,已开源

△长按关注极市平台

觉得有用麻烦给个在看啦~    刷新COCO目标检测纪录!谷歌只靠AI扩增数据,就把一个模型变成SOTA,已开源


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Domain-Driven Design Distilled

Domain-Driven Design Distilled

Vaughn Vernon / Addison-Wesley Professional / 2016-6-2 / USD 36.99

Domain-Driven Design (DDD) software modeling delivers powerful results in practice, not just in theory, which is why developers worldwide are rapidly moving to adopt it. Now, for the first time, there......一起来看看 《Domain-Driven Design Distilled》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具