Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议

栏目: Python · 发布时间: 5年前

内容简介:Jupyter笔记本中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。

Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议

项目地址: https://github.com/rasbt/deeplearning-models 

Jupyter笔记本中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。

传统机器学习

  • 感知机 Perceptron [TensorFlow 1] [PyTorch]

  • 逻辑回归 Logistic Regression [TensorFlow 1] [PyTorch]

  • Softmax回归(多项逻辑回归) Softmax Regression (Multinomial Logistic Regression) [TensorFlow 1] [PyTorch]

多层感知机

  • Multilayer Perceptron [TensorFlow 1] [PyTorch]

  • Multilayer Perceptron with Dropout [TensorFlow 1] [PyTorch]

  • Multilayer Perceptron with Batch Normalization [TensorFlow 1] [PyTorch]

  • Multilayer Perceptron with Backpropagation from Scratch [TensorFlow 1] [PyTorch]

卷积神经网络

基本

  • Convolutional Neural Network [TensorFlow 1] [PyTorch]

  • Convolutional Neural Network with He Initialization [PyTorch]

概念

  • Replacing Fully-Connnected by Equivalent Convolutional Layers [PyTorch]

完全卷积

  • Fully Convolutional Neural Network [PyTorch]

AlexNet

  • AlexNet on CIFAR-10 [PyTorch]

VGG

  • Convolutional Neural Network VGG-16 [TensorFlow 1] [PyTorch]

  • VGG-16 Gender Classifier Trained on CelebA [PyTorch]

  • Convolutional Neural Network VGG-19 [PyTorch]

ResNet

  • ResNet and Residual Blocks [PyTorch]

  • ResNet-18 Digit Classifier Trained on MNIST [PyTorch]

  • ResNet-18 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-34 Digit Classifier Trained on MNIST [PyTorch]

  • ResNet-34 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-50 Digit Classifier Trained on MNIST [PyTorch]

  • ResNet-50 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-101 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-152 Gender Classifier Trained on CelebA [PyTorch]

Network in Network

  • Network in Network CIFAR-10 Classifier [PyTorch]

度量学习

  • Siamese Network with Multilayer Perceptrons [TensorFlow 1]

自编码器

完全连接的自编码器

  • Autoencoder [TensorFlow 1] [PyTorch]

卷积自编码器

  • Convolutional Autoencoder with Deconvolutions / Transposed Convolutions[TensorFlow 1] [PyTorch]

  • Convolutional Autoencoder with Deconvolutions (without pooling operations) [PyTorch]

  • Convolutional Autoencoder with Nearest-neighbor Interpolation [TensorFlow 1] [PyTorch]

  • Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on CelebA [PyTorch]

  • Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on Quickdraw [PyTorch]

变分自编码器

  • Variational Autoencoder [PyTorch]

  • Convolutional Variational Autoencoder [PyTorch]

条件变分自编码器

  • Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]

  • Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

  • Convolutional Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]

  • Convolutional Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

生成对抗网络(GAN)

  • Fully Connected GAN on MNIST [TensorFlow 1] [PyTorch]

  • Convolutional GAN on MNIST [TensorFlow 1] [PyTorch]

  • Convolutional GAN on MNIST with Label Smoothing [PyTorch]

递归神经网络(RNN)

多对一: 情感分析/分类

  • A simple single-layer RNN (IMDB) [PyTorch]

  • A simple single-layer RNN with packed sequences to ignore padding characters (IMDB) [PyTorch]

  • RNN with LSTM cells (IMDB) [PyTorch]

  • RNN with LSTM cells (IMDB) and pre-trained GloVe word vectors [PyTorch]

  • RNN with LSTM cells and Own Dataset in CSV Format (IMDB) [PyTorch]

  • RNN with GRU cells (IMDB) [PyTorch]

  • Multilayer bi-directional RNN (IMDB) [PyTorch]

多对多/序列到序列

  • A simple character RNN to generate new text (Charles Dickens) [PyTorch]

顺序回归

  • Ordinal Regression CNN -- CORAL w. ResNet34 on AFAD-Lite [PyTorch]

  • Ordinal Regression CNN -- Niu et al. 2016 w. ResNet34 on AFAD-Lite [PyTorch]

  • Ordinal Regression CNN -- Beckham and Pal 2016 w. ResNet34 on AFAD-Lite [PyTorch]

技巧和窍门

  • Cyclical Learning Rate [PyTorch]

PyTorch工作流程和机制

自定义数据集

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- CSV files converted to HDF5 [PyTorch]

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Face Images from CelebA [PyTorch]

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from Quickdraw [PyTorch]

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from the Street View House Number (SVHN) Dataset [PyTorch]

训练和预处理

  • Dataloading with Pinned Memory [PyTorch]

  • Standardizing Images [PyTorch]

  • Image Transformation Examples [PyTorch]

  • Char-RNN with Own Text File [PyTorch]

  • Sentiment Classification RNN with Own CSV File [PyTorch]

并行计算

  • Using Multiple GPUs with DataParallel -- VGG-16 Gender Classifier on CelebA [PyTorch]

其他

  • Sequential API and hooks [PyTorch]

  • Weight Sharing Within a Layer [PyTorch]

  • Plotting Live Training Performance in Jupyter Notebooks with just Matplotlib [PyTorch]

Autograd

  • Getting Gradients of an Intermediate Variable in PyTorch [PyTorch]

TensorFlow工作流程和机制

自定义数据集

  • Chunking an Image Dataset for Minibatch Training using NumPy NPZ Archives [TensorFlow 1]

  • Storing an Image Dataset for Minibatch Training using HDF5 [TensorFlow 1]

  • Using Input Pipelines to Read Data from TFRecords Files [TensorFlow 1]

  • Using Queue Runners to Feed Images Directly from Disk [TensorFlow 1]

  • Using TensorFlow's Dataset API [TensorFlow 1]

训练和预处理

  • Saving and Loading Trained Models -- from TensorFlow Checkpoint Files and NumPy NPZ Archives [TensorFlow 1]

Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议   点击 阅读原文 ,查看本文更多内容


以上所述就是小编给大家介绍的《Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

中国创投简史

中国创投简史

投资界网站 / 人民邮电出版社 / 2017-1-1 / 55

《中国创投简史》系统梳理了自20世纪80年代开始的中国创投产业发展历程,回顾了各个时代中的代表人物、知名投资机构以及他们所创下的一个个投资奇迹。从熊晓鸽、徐新、沈南鹏等风险投资人的成长经历中,从搜狐、腾讯、百度、小米等一代代科技企业巨头的诞生与演变过程中,我们可以看到风险投资的力量、创业者的企业家精神以及科技创造伟大财富的神奇过程。 对于风险投资和私募股权行业的从业者以及有融资需求的创业者来......一起来看看 《中国创投简史》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器