Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议

栏目: Python · 发布时间: 5年前

内容简介:Jupyter笔记本中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。

Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议

项目地址: https://github.com/rasbt/deeplearning-models 

Jupyter笔记本中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。

传统机器学习

  • 感知机 Perceptron [TensorFlow 1] [PyTorch]

  • 逻辑回归 Logistic Regression [TensorFlow 1] [PyTorch]

  • Softmax回归(多项逻辑回归) Softmax Regression (Multinomial Logistic Regression) [TensorFlow 1] [PyTorch]

多层感知机

  • Multilayer Perceptron [TensorFlow 1] [PyTorch]

  • Multilayer Perceptron with Dropout [TensorFlow 1] [PyTorch]

  • Multilayer Perceptron with Batch Normalization [TensorFlow 1] [PyTorch]

  • Multilayer Perceptron with Backpropagation from Scratch [TensorFlow 1] [PyTorch]

卷积神经网络

基本

  • Convolutional Neural Network [TensorFlow 1] [PyTorch]

  • Convolutional Neural Network with He Initialization [PyTorch]

概念

  • Replacing Fully-Connnected by Equivalent Convolutional Layers [PyTorch]

完全卷积

  • Fully Convolutional Neural Network [PyTorch]

AlexNet

  • AlexNet on CIFAR-10 [PyTorch]

VGG

  • Convolutional Neural Network VGG-16 [TensorFlow 1] [PyTorch]

  • VGG-16 Gender Classifier Trained on CelebA [PyTorch]

  • Convolutional Neural Network VGG-19 [PyTorch]

ResNet

  • ResNet and Residual Blocks [PyTorch]

  • ResNet-18 Digit Classifier Trained on MNIST [PyTorch]

  • ResNet-18 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-34 Digit Classifier Trained on MNIST [PyTorch]

  • ResNet-34 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-50 Digit Classifier Trained on MNIST [PyTorch]

  • ResNet-50 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-101 Gender Classifier Trained on CelebA [PyTorch]

  • ResNet-152 Gender Classifier Trained on CelebA [PyTorch]

Network in Network

  • Network in Network CIFAR-10 Classifier [PyTorch]

度量学习

  • Siamese Network with Multilayer Perceptrons [TensorFlow 1]

自编码器

完全连接的自编码器

  • Autoencoder [TensorFlow 1] [PyTorch]

卷积自编码器

  • Convolutional Autoencoder with Deconvolutions / Transposed Convolutions[TensorFlow 1] [PyTorch]

  • Convolutional Autoencoder with Deconvolutions (without pooling operations) [PyTorch]

  • Convolutional Autoencoder with Nearest-neighbor Interpolation [TensorFlow 1] [PyTorch]

  • Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on CelebA [PyTorch]

  • Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on Quickdraw [PyTorch]

变分自编码器

  • Variational Autoencoder [PyTorch]

  • Convolutional Variational Autoencoder [PyTorch]

条件变分自编码器

  • Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]

  • Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

  • Convolutional Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]

  • Convolutional Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

生成对抗网络(GAN)

  • Fully Connected GAN on MNIST [TensorFlow 1] [PyTorch]

  • Convolutional GAN on MNIST [TensorFlow 1] [PyTorch]

  • Convolutional GAN on MNIST with Label Smoothing [PyTorch]

递归神经网络(RNN)

多对一: 情感分析/分类

  • A simple single-layer RNN (IMDB) [PyTorch]

  • A simple single-layer RNN with packed sequences to ignore padding characters (IMDB) [PyTorch]

  • RNN with LSTM cells (IMDB) [PyTorch]

  • RNN with LSTM cells (IMDB) and pre-trained GloVe word vectors [PyTorch]

  • RNN with LSTM cells and Own Dataset in CSV Format (IMDB) [PyTorch]

  • RNN with GRU cells (IMDB) [PyTorch]

  • Multilayer bi-directional RNN (IMDB) [PyTorch]

多对多/序列到序列

  • A simple character RNN to generate new text (Charles Dickens) [PyTorch]

顺序回归

  • Ordinal Regression CNN -- CORAL w. ResNet34 on AFAD-Lite [PyTorch]

  • Ordinal Regression CNN -- Niu et al. 2016 w. ResNet34 on AFAD-Lite [PyTorch]

  • Ordinal Regression CNN -- Beckham and Pal 2016 w. ResNet34 on AFAD-Lite [PyTorch]

技巧和窍门

  • Cyclical Learning Rate [PyTorch]

PyTorch工作流程和机制

自定义数据集

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- CSV files converted to HDF5 [PyTorch]

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Face Images from CelebA [PyTorch]

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from Quickdraw [PyTorch]

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from the Street View House Number (SVHN) Dataset [PyTorch]

训练和预处理

  • Dataloading with Pinned Memory [PyTorch]

  • Standardizing Images [PyTorch]

  • Image Transformation Examples [PyTorch]

  • Char-RNN with Own Text File [PyTorch]

  • Sentiment Classification RNN with Own CSV File [PyTorch]

并行计算

  • Using Multiple GPUs with DataParallel -- VGG-16 Gender Classifier on CelebA [PyTorch]

其他

  • Sequential API and hooks [PyTorch]

  • Weight Sharing Within a Layer [PyTorch]

  • Plotting Live Training Performance in Jupyter Notebooks with just Matplotlib [PyTorch]

Autograd

  • Getting Gradients of an Intermediate Variable in PyTorch [PyTorch]

TensorFlow工作流程和机制

自定义数据集

  • Chunking an Image Dataset for Minibatch Training using NumPy NPZ Archives [TensorFlow 1]

  • Storing an Image Dataset for Minibatch Training using HDF5 [TensorFlow 1]

  • Using Input Pipelines to Read Data from TFRecords Files [TensorFlow 1]

  • Using Queue Runners to Feed Images Directly from Disk [TensorFlow 1]

  • Using TensorFlow's Dataset API [TensorFlow 1]

训练和预处理

  • Saving and Loading Trained Models -- from TensorFlow Checkpoint Files and NumPy NPZ Archives [TensorFlow 1]

Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议   点击 阅读原文 ,查看本文更多内容


以上所述就是小编给大家介绍的《Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

我看电商2(双色)

我看电商2(双色)

黄若 / 电子工业出版社 / 2016-6 / 39.00元

《我看电商2》是行业畅销书《我看电商》的续集。 《我看电商》自出版以来,连续印刷14 次,受到业界人士和广大读者的高度好评。《我看电商2》承续作者一贯的风格,以行业观察、经验分享为出发点,重点分析了过去一年中国电商界的最新动态与趋势,包括双11点评、京东关闭拍拍、上市公司私有化等。 电子商务是我国近年来发展最快的新兴行业之一,作者作为这个行业的长老级领军人物,善于思考,长于实操。《我看......一起来看看 《我看电商2(双色)》 这本书的介绍吧!

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具