Transformer 代码实现及应用

栏目: 数据库 · 发布时间: 5年前

内容简介:Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin(Submitted on 12 Jun 2017 (v1), last revised 6 Dec 2017 (this version, v5))

Transformer_implementation_and_application 该资源仅仅用300行代码(Tensorflow 2)完整复现了Transformer模型,并且应用在神经机器翻译任务和聊天机器人上。

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

(Submitted on 12 Jun 2017 (v1), last revised 6 Dec 2017 (this version, v5))

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

Comments: 15 pages, 5 figures

Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Cite as: arXiv:1706.03762 [cs.CL]

(or arXiv:1706.03762v5 [cs.CL] for this version)


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

微信营销与运营

微信营销与运营

王易 / 机械工业出版社 / 2014-1-1 / CNY 49.00

这是一本深度介绍微信营销的书,也是一本系统讲解微信公众账号运营的书,它基于微信的最新版本,从策略、方法、技巧与实践等多角度详细解析了微信的营销与运营,所有内容都是行业经验的结晶,旨在为企业运用微信提供有价值的参考。 本书首先从商业模式角度全面分析了微信5.0推出的“扫一扫”、表情商店、微信游戏、微信支付等新功能背后的商业机会,以及订阅号折叠给企业带来的影响和应对策略;其次从运营角度系统归纳了......一起来看看 《微信营销与运营》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试