11、web爬虫讲解2—Scrapy框架爬虫—Scrapy使用

栏目: Python · 发布时间: 5年前

内容简介:【【xpath表达式

百度云搜索,搜各种资料:http://www.lqkweb.com

搜网盘,搜各种资料:http://www.swpan.cn

xpath表达式

//x 表示向下查找n层指定标签,如://div 表示查找所有div标签

/x 表示向下查找一层指定的标签

/@x 表示查找指定属性的值,可以连缀如:@id @src

[@属性名称="属性值"]表示查找指定属性等于指定值的标签,可以连缀 ,如查找class名称等于指定名称的标签 

/text() 获取标签文本类容

[x] 通过索引获取集合里的指定一个元素

1、将xpath表达式过滤出来的结果进行正则匹配,用正则取最终内容

最后.re('正则')

xpath('//div[@class="showlist"]/li//img')[0].re('alt="(\w+)')

2、在选择器规则里应用正则进行过滤

[re:正则规则]

xpath('//div[re:test(@class, "showlist")]').extract()

实战使用Scrapy获取一个电商网站的、商品标题、商品链接、和评论数

11、web爬虫讲解2—Scrapy框架爬虫—Scrapy使用

分析源码

11、web爬虫讲解2—Scrapy框架爬虫—Scrapy使用

第一步、编写items.py容器文件

我们已经知道了我们要获取的是、商品标题、商品链接、和评论数

在items.py创建容器接收爬虫获取到的数据

设置爬虫获取到的信息容器类,必须继承scrapy.Item类

scrapy.Field()方法,定义变量用scrapy.Field()方法接收爬虫指定字段的信息

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

#items.py,文件是专门用于,接收爬虫获取到的数据信息的,就相当于是容器文件

class AdcItem(scrapy.Item):    #设置爬虫获取到的信息容器类
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()      #接收爬虫获取到的title信息
    link = scrapy.Field()       #接收爬虫获取到的连接信息
    comment = scrapy.Field()    #接收爬虫获取到的商品评论数

第二步、编写pach.py爬虫文件

定义爬虫类,必须继承scrapy.Spider

name设置爬虫名称

allowed_domains设置爬取域名

start_urls设置爬取网址

parse(response)爬虫回调函数,接收response,response里是获取到的html数据对象

xpath()过滤器,参数是xpath表达式

extract()获取html数据对象里的数据

yield item 接收了数据的容器对象,返回给pipelies.py

# -*- coding: utf-8 -*-
import scrapy
from adc.items import AdcItem  #导入items.py里的AdcItem类,容器类

class PachSpider(scrapy.Spider):                 #定义爬虫类,必须继承scrapy.Spider
    name = 'pach'                                #设置爬虫名称
    allowed_domains = ['search.dangdang.com']    #爬取域名
    start_urls = ['http://category.dangdang.com/pg1-cid4008149.html']     #爬取网址

    def parse(self, response):                   #parse回调函数
        item = AdcItem()                         #实例化容器对象
        item['title'] = response.xpath('//p[@class="name"]/a/text()').extract()  #表达式过滤获取到数据赋值给,容器类里的title变量
        # print(rqi['title'])
        item['link'] = response.xpath('//p[@class="name"]/a/@href').extract()    #表达式过滤获取到数据赋值给,容器类里的link变量
        # print(rqi['link'])
        item['comment'] = response.xpath('//p[@class="star"]//a/text()').extract() #表达式过滤获取到数据赋值给,容器类里的comment变量
        # print(rqi['comment'])
        yield item   #接收了数据的容器对象,返回给pipelies.py

robots协议

注意:如果获取的网站在robots.txt文件里设置了,禁止爬虫爬取协议,那么将无法爬取,因为scrapy默认是遵守这个robots这个国际协议的,如果想不遵守这个协议,需要在settings.py设置

到settings.py文件里找到ROBOTSTXT_OBEY变量,这个变量等于False不遵守robots协议,等于True遵守robots协议

# Obey robots.txt rules
ROBOTSTXT_OBEY = False   #不遵循robots协议

第三步、编写pipelines.py数据处理文件

如果需要pipelines.py里的数据处理类能工作,需在settings.py设置文件里的ITEM_PIPELINES变量里注册数据处理类

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'adc.pipelines.AdcPipeline': 300,  #注册adc.pipelines.AdcPipeline类,后面一个数字参数表示执行等级,数值越大越先执行
}

注册后pipelines.py里的数据处理类就能工作

定义数据处理类,必须继承object

process_item(item)为数据处理函数,接收一个item,item里就是爬虫最后yield item 来的数据对象

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

class AdcPipeline(object):                      #定义数据处理类,必须继承object
    def process_item(self, item, spider):       #process_item(item)为数据处理函数,接收一个item,item里就是爬虫最后yield item 来的数据对象
        for i in range(0,len(item['title'])):   #可以通过item['容器名称']来获取对应的数据列表
            title = item['title'][i]
            print(title)
            link = item['link'][i]
            print(link)
            comment = item['comment'][i]
            print(comment)
        return item

最后执行

执行爬虫文件,scrapy crawl pach --nolog

11、web爬虫讲解2—Scrapy框架爬虫—Scrapy使用

可以看到我们需要的数据已经拿到了

【转载自: http://www.lqkweb.com


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

交易系统

交易系统

武剑锋 / 上海人民出版社 / 2011-1 / 32.00元

《交易系统:更新与跨越》是中国第一部研究证券交易系统的专业著作,填补了这一领域的学术空白。既回顾和总结了系统规划、建设和上线过程中,技术管理、架构设计、应用调优、切换部署、运行维护等方面的经验和教训,也从较为宏观的角度描述了独具中国特色的交易技术支撑体系,特别是,通过分析其他资本市场交易系统的近年来发展历程和后续的技术发展规划,探索了未来业务创新和技术创新的大致框架和可能的模式。相信《交易系统:更......一起来看看 《交易系统》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具