掌握JMH 原 荐

栏目: 编程工具 · 发布时间: 5年前

内容简介:关于JMH,可以直接查看官网地址本博客内容来自我正在撰写的新书《Java性能优化(暂定名)》,也欢迎购买经典书通过手工编写一个性能压测程序有较多的问题

关于JMH,可以直接查看官网地址 http://openjdk.java.net/projects/code-tools/jmh/

本博客内容来自我正在撰写的新书《Java性能优化(暂定名)》,也欢迎购买经典书 《Spring Boot 2 实战权威指南》

1.3 JMH

1.3.1 使用JMH

通过手工编写一个性能压测程序有较多的问题

  • 不同需要性能比较方法放到一个虚拟机里调用,有可能会互相影响。最好的办法是分成俩个独立的进程运行,确保俩个对比方法不相互影响。
  • PerformaceAreaTest启动后直接运行, 缺少预热代过程。虚拟机在执行代码过程中,会加载类,解释执行,以及有可能的优化编译。需要确保虚拟机进行了一定预热运行,以保证测试的公平性,我们在运行PerformaceAreaTest2的时候,能看到第一次循环执行时间总是较长。可以参考第8章了解JIT
  • 为了避免环境影响造成的对结果统计不准,我们需要运行多次,取出平均成绩
  • 需要从多个纬度统计方法的性能,统计冷启动需要消耗的时间,统计OPS,TP99的功能。

JMH使用OPS来表示吞吐量,OPS,Opeartion Per Second,是衡量性能的重要指标,指得是每秒操作量。数值越大,性能越好。类似的概念还有TPS,表示每秒的事务完成量,QPS,每秒的查询量。 如果对每次执行时间进行升序排序,取出总数的99%的最大执行时间作为TP99的值,TP99通常是衡量系统性能重要指标,他表示99%的请求的响应时间不超过某个值。比TP99更严格的事TP999,要求99.9%的请求不超过某个值

有什么 工具 能帮助我们统计性能优化后的效果,比如更方便的统计OPS,TP99等。同时,我们为了做调优,不必每次都自己写一个测试程序

JMH,即Java Microbenchmark Harness,是专门用于代码微基准测试的工具套件。主要是基于方法层面的基准测试,精度可以达到纳秒级。当你定位到热点方法,希望进一步优化方法性能的时候,就可以使用JMH对优化的结果进行量化的分析。

JMH 实现了JSR269规范,即注解处理器,能在编译 Java 源码的时候,识别的到需要处理的注解,如@Beanmark,JMH能根据@Beanmark的配置生成一系列测试辅助类。关于JSR269,本书11章详细介绍. 流行开源Lombok 基于JSR269规范

开始是使用JMH,可以在工程里添加对JMH的依赖,添加如下

<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-core</artifactId>
    <version>${jmh.version}</version>
</dependency>
<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-generator-annprocess</artifactId>
    <version>${jmh.version}</version>
    <scope>provided</scope>
</dependency>

${jmh.version} 为jmh最新版本,为1.0

我们编写一个JMH测试类

@BenchmarkMode(Mode.Throughput)
@Warmup(iterations = 3)
@Measurement(iterations = 3, time = 5, timeUnit = TimeUnit.SECONDS)
@Threads(1)
@Fork(1)
@OutputTimeUnit(TimeUnit.SECONDS)
public class MyBenchmark {
   	@Benchmark
    public static void  testStringKey(){
        //优化前的代码
    }
    @Benchmark
    public static void  testObjectKey(){
       //要测试的优化后代码
    }
    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
                .include(MyBenchmark.class.getSimpleName())
                .build();
        new Runner(opt).run();
    }
}

MyBenchmark 有俩个需要比较的方法,都用 @Benchmark注解标识,MyBenchmark用了一系列注解,解释如下

  • BenchmarkMode,使用模式,默认是Mode.Throughput,表示吞吐量,其他参数还有AverageTime,表示每次执行时间,SampleTime表示采样时间,SingleShotTime表示只运行一次,用于测试冷启动消耗时间,All表示统计前面的所有指标
  • Warmup 配置预热次数,默认是每次运行1秒,运行10次,我们的例子是运行3次
  • Measurement 配置执行次数,本例是一次运行5秒,总共运行3次。在性能对比时候,采用默认1秒即可,如果我们用jvisualvm做性能监控,我们可以指定一个较长时间运行。
  • Threads 配置同时起多少个线程执行,默认值世 Runtime.getRuntime().availableProcessors(),本例启动1个线程同时执行
  • Fork,代表启动多个单独的进程分别测试每个方法,我们这里指定为每个方法启动一个进程。
  • OutputTimeUnit 统计结果的时间单元,这个例子TimeUnit.SECONDS,我们在运行后会看到输出结果是统计每秒的吞吐量

我们在MyBenchmark添加需要的测试方法,如下

static AreaService areaService = new AreaService();
static PreferAreaService perferAreaService = new PreferAreaService();
static List<Area> data = buildData(20);

@Benchmark
public static void  testStringKey(){
    areaService.buildArea(data);
}
@Benchmark
public static void  testObjectKey(){
    perferAreaService.buildArea(data);
}

private static List<Area> buildData(int count){
    List<Area>  list = new ArrayList<>(count);
    for(int i=0;i<count;i++){
        Area area = new Area(i,i*10);
        list.add(area);
    }
    return list;
}

因为MyBenchmark包含了一个main方法,我们可以直接在IDE里直接运行这个方法,有如下输出

# Warmup: 3 iterations, 1 s each
# Measurement: 3 iterations, 5 s each
# Threads: 1 threads, will synchronize iterations
# Benchmark mode: Throughput, ops/time

以上输出来自于我们的配置,第一行表示预热3次,每次执行1秒,第二行表示运行3次,每次运行5秒,这部分的运行结果计入统计。第三行表示1个线程执行,第四行统计性能数据纬度是Throughput,吞吐量

紧接着会运行testObjectKey方法,有如下输出

# Benchmark: com.ibeetl.code.ch01.test.MyBenchmark.testObjectKey

# Run progress: 0.00% complete, ETA 00:00:36
# Fork: 1 of 1
objc[68658]: Class JavaLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home/jre/bin/java and /Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home/jre/lib/libinstrument.dylib. One of the two will be used. Which one is undefined.
# Warmup Iteration   1: 1288302.671 ops/s
# Warmup Iteration   2: 3061587.202 ops/s
# Warmup Iteration   3: 1094970.828 ops/s
Iteration   1: 2491836.097 ops/s
Iteration   2: 2780362.118 ops/s
Iteration   3: 3621313.883 ops/s

这里的Fork表示子进程,我们只配置里一个,因此只有一个进程的执行结果,该进程包含预热3次,每次1秒,以及运行3次,每次运行5秒,执行完testObjectKey方法后,会自动打印一个汇总信息

Result: 939996.216 ±(99.9%) 2012646.237 ops/s [Average]
  Statistics: (min, avg, max) = (813154.364, 939996.216, 1013607.616), stdev = 110319.932
  Confidence interval (99.9%): [-1072650.021, 2952642.453]

统计结果给出了多次测试后的最小值,最大值和均值,以及标准差 (stdev),置信区间(Confidence interval)

标准差(stdev)反映了数值相对于平均值得离散程度,置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间( Confidence interval )是对这个样本的某个总体参数的区间估计

testStringKey的输出与上面类似,这俩个比较方法执行完毕,会自动打印出一个性能对比数据表格

Benchmark                               Mode  Samples        Score  Score error  Units
c.i.c.c.t.MyBenchmark.testObjectKey    thrpt        3  1976766.072   408421.217  ops/s
c.i.c.c.t.MyBenchmark.testStringKey    thrpt        3   423788.869   222139.136  ops/s

Benchmark列表示这次测试对比的方法,Mode列表上结果的统计纬度,Samples列表示采样次数,Samples=Fork*Iteration。Score是对这次评测的打分,对于testObjectKey,意味着他的OPS为每秒1976766,大约4倍testStringKey方法

Score Error 这里表示性能统计上的误差,我们不需要关心这个数据,主要查看Score

可以修改统计纬度,比如修改为Mode.SampleTime,时间按照纳秒统计

@BenchmarkMode(Mode.SampleTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
......
public class MyBenchmark {}

可以看到有一组如下统计

p( 0.0000) =   1992.000 ns/op
p(50.0000) =   2084.000 ns/op
p(90.0000) =   2464.000 ns/op
p(95.0000) =   3472.000 ns/op
p(99.0000) =   4272.000 ns/op
p(99.9000) =  17481.920 ns/op
p(99.9900) =  80659.840 ns/op
p(99.9990) = 562593.690 ns/op
p(99.9999) = 745472.000 ns/op

可以看到90%的调用,是在2464纳秒内完成,99%的调用都是在4272纳秒完成的.

1.3.2 JMH常用设置

在这个例子,我们性能测试所依赖的对象areaService,perferAreaService 恰好是线程安全的,大多数时候性能测试方法都会引用一些外部实例对象,考虑到多线程测试访问这些实例对象,JMH要求必须为这些变量申明是Thread 内生效,还是整个BeanMark使用。如果是前者,JMH会为每个线程构建一个新的实例,后者则所有测试都共享这个变量,JMH用@State注解来说明对象的生命周期,@State注解作用在类上,比如,在MyBenchmark例子里,我们可以改成如下例子

@State(Scope.Benchmark)
public static class SharedPara{
    AreaService areaService = new AreaService();
    PreferAreaService perferAreaService = new PreferAreaService();
    List<Area> data = buildData(20);

    private  List<Area> buildData(int count){
        //忽略其他代码
    }

}

@Benchmark
public  void  testStringKey(SharedPara para){
    para.areaService.buildArea(para.data);
}
@Benchmark
public  void  testObjectKey(SharedPara para){
    para.perferAreaService.buildArea(para.data);
}

必须申明一公共静态内部类,该类包含了我们需要使用的实例对象,并在该类用@State注解表明这个对象是Thread的还是BeanchMark范围内使用。在这个例子里,因为配置为Scope.Benchmark,JMH在整个性能测试过程中,只构造一个SharedPara实例,SharedPara 作为参数传入每个待测试的方法。

也可以不使用内部类,直接使用申明性能测试的类,在类上使用@State注解

@State(Scope.Benchmark)
public class MyBenchmarkStateSimple {
  AreaService areaService = new AreaService();
  PreferAreaService perferAreaService = new PreferAreaService();
  List<Area> data = buildData(20);
  //忽略其他代码
}

@Setup 和 @TearDown 是一对注解,作用于方法上,前者用于测试前的初始化工作,后者用于回收某些资源,比如压测前需要准备一些数据

@State(Scope.Benchmark)
public class ScriptEngineBeanchmrk {
    String script = null;
    @Benchmark
    public void nashornTest(){
		// ... 测试方法
    }
    
    @Setup
    public void loadScriptFromFile(){
		//加载一个测试脚本
    }

}

@Level 用于控制 @Setup,@TearDown 的调用时机,有如下含义

  • Level.Tiral: 运行每个性能测试的时候执行,推荐的方式。
  • Level.Iteration, 每次迭代的时候执行
  • Level.Invocation,每次调用方法的时候执行,这个选项需要谨慎使用。

JMH提供了Runner类能运行Benchmark类

public static void main(String[] args) throws RunnerException {
    Options opt = new OptionsBuilder()
        .include(MyBenchmark.class.getSimpleName())
        .build();
    new Runner(opt).run();
}

include接受一个字符串表达式,表示需要测试的类和方法,如上例子测试所有方法MyBenchmark。如下例子则只测试方法名字包含“testObjectKey“的方法

include(MyBenchmark.class.getSimpleName()+".*testObjectKey*")

OptionsBuilder包含了多个方法用于配置性能测试,可以指定循环次数,预热次数等,如下例子会用4个子进程做性能测试,每个进程预热一次,执行5次迭代

public static void main(String[] args) throws RunnerException {
    Options opt = new OptionsBuilder()
        .include(MyBenchmark.class.getSimpleName())
        .forks(4)
        .warmupIterations(1)
        .measurementIterations(5)
        .build();
    new Runner(opt).run();
}

截至到目前为止,JMH都是通过一个main方法在IDE里执行,更为通常情况,JMH推荐使用单独的一个Maven工程来执行性能测试而不要放到业务工程里。可以通过maven archetype:generate 命令来生成一个心得JMH Maven工程。

mvn archetype:generate
          -DinteractiveMode=false
          -DarchetypeGroupId=org.openjdk.jmh
          -DarchetypeArtifactId=jmh-java-benchmark-archetype
          -DgroupId=code.ibeetl.com
          -DartifactId=first-benchmark
          -Dversion=1.0

为了阅读方便,分成几行,如上命令行应该放到一行执行,执行完毕后,生成了一个maven工程,maven工程仅仅包含了一个 MyBenchmark 例子。

package org.sample;

import org.openjdk.jmh.annotations.Benchmark;

public class MyBenchmark {

    @Benchmark
    public void testMethod() {
        // place your benchmarked code here
    }
}

我们可以修改MyBenchmark,添加我们需要测试的代码, 现在,可以创建一个性能测试的jar文件,通过运行如下maven命令

mvn clean install

命令会在target目录下生成一个benchmarks.jar,包含了运行性能测试所需的任何东西,在命令行运行如下命令

java -jar target/benchmarks.jar  MyBenchmark

JMH将会被启动,默认情况下运行MyBenchmark类里的所有被@Benchmark标注方法

有些性能测试需要了解不同输入参数的性能,比如对于模板引擎的性能测试中,考虑到字节流输出和字符流输出

@Param({"1","2","3"})
int  outputType;
@Benchmark
public String benchmark() throws TemplateException, IOException {
  if(outputType==3){
			return doStream();
  }else if(outputType==2) {
    return doCharStream()
  }else{
    return  doString();
  }
 
}

JMH会分别赋值outpuType为1,2,3后,在各自测试一次,会输出如下

Benchmark	      (outputType)	Score	    Units
Beetl.benchmark	    1	        44977.421	ops/s
Beetl.benchmark	    2	        34931.724	ops/s
Beetl.benchmark	    3	        59175.106	ops/s

1.3.3 注意事项

编写JHM代码,需要考虑到虚拟机的优化,而使得测试失真,如下measureWrong代码就是所谓的Dead-Code代码

@State(Scope.Thread)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class JMHSample_08_DeadCode {
  private double x = Math.PI;

  @Benchmark
  public void baseline() {
    //基准
  }

  @Benchmark
  public void measureWrong() {
    //虚拟机会优化掉这部分,性能同baseline
    Math.log(x);
  }

  @Benchmark
  public double measureRight() {
    // 真正的性能测试
    return Math.log(x);
  }
}

测试结果如下

Benchmark                                               Mode     Score    Units    
c.i.c.c.c.i.c.c.j.JMHSample_08_DeadCode.baseline        avgt     0.358    ns/op    
c.i.c.c.c.i.c.c.j.JMHSample_08_DeadCode.measureRight    avgt    24.605    ns/op    
c.i.c.c.c.i.c.c.j.JMHSample_08_DeadCode.measureWrong    avgt     0.366    ns/op

在测试measureWrong方法,JIT能推测出方法体可以被优化调而不影响系统,measureRight因为定义了返回值,JIT不会优化。

下一个是关于常量折叠,JIT认为方法计算结果为常量,从而优化直接返回常量给调用者

private double x = Math.PI;
 private final double wrongX = Math.PI;

  @Benchmark
  public double baseline() {
    // 基准测试
    return Math.PI;
  }

  @Benchmark
  public double measureWrong_1() {
    // JIT认为是个常量
    return Math.log(Math.PI);
  }

  @Benchmark
  public double measureWrong_2() {
    // JIT认为方法调用结果是个常量.
    return Math.log(wrongX);
  }

  @Benchmark
  public double measureRight() {
    // 正确的测试
    return Math.log(x);
  }

如下是测试结果

Benchmark                                                     Mode    Score   Units           
c.i.c.c.c.i.c.c.j.JMHSample_10_ConstantFold.baseline          avgt    1.175   ns/op           
c.i.c.c.c.i.c.c.j.JMHSample_10_ConstantFold.measureRight      avgt   25.805   ns/op           
c.i.c.c.c.i.c.c.j.JMHSample_10_ConstantFold.measureWrong_1    avgt    1.116   ns/op           
c.i.c.c.c.i.c.c.j.JMHSample_10_ConstantFold.measureWrong_2    avgt    1.031   ns/op

考虑到inline对性能影响很大,JMH支持 @CompilerControl来控制是否允许内联

public class Inline {
  int x=0,y=0;
  @Benchmark
  @CompilerControl(CompilerControl.Mode.DONT_INLINE)
  public  int   add(){
    return dataAdd(x,y);
  }

  @Benchmark
  public  int  addInline(){
    return dataAdd(x,y);
  }

  private int  dataAdd(int x,int y){
    return x+y;
  }
  @Setup
  public void init() {
    x = 1;
    y = 2;
  }
}

add和addInline方法都会调用dataAdd方法,前者使用CompilerControl类,可以用在方法或者类上,来提供编译选项

  • DONT_INLINE,调用方法不内联
  • INLINE,调用方法内联
  • BREAK,插入一个调试断点(TODO,如何调试,参考11章)
  • PRINT,打印方法被JIT编译后的机器码信息

开发人员可能觉得上面的测试,add方法太简单,会习惯性的在add方法里方一个循环,以减少JMH调用add方法的成本。JMH不建议这么做,因为JIT会实际上对这种循环会做优化,以消除循环调用成本。如下是个例子可以看到循环测试结果不准确

int x = 1;
int y = 2;

/** 正确测试
*/
@Benchmark
public int measureRight() {
  return (x + y);
}


private int reps(int reps) {
  int s = 0;
  for (int i = 0; i < reps; i++) {
    s += (x + y);
  }
  return s;
}

@Benchmark
@OperationsPerInvocation(1)
public int measureWrong_1() {
  return reps(1);
}

@Benchmark
@OperationsPerInvocation(10)
public int measureWrong_10() {
  return reps(10);
}

@Benchmark
@OperationsPerInvocation(100)
public int measureWrong_100() {
  return reps(100);
}

@Benchmark
@OperationsPerInvocation(1000)
public int measureWrong_1000() {
  return reps(1000);
}

注解OperationsPerInvocation 告诉JMH统计性能的时候需要做修正,比如@OperationsPerInvocation(10)调用了10次。

性能测试结果如下

编写性能测试的一个好习惯是先编写一个单元测试用例,以确保性能测试准确性,x  Benchmark                                                   Mode   Score   Units    c.i.c.c.c.i.c.c.j.JMHSample_11_Loops.measureRight           avgt   1.114   ns/op    c.i.c.c.c.i.c.c.j.JMHSample_11_oops.measureWrong_1         avgt   1.057   ns/op    c.i.c.c.c.i.c.c.j.JMHSample_11_Loops.measureWrong_10        avgt   0.139   ns/op    c.i.c.c.c.i.c.c.j.JMHSample_11_Loops.measureWrong_100       avgt   0.018   ns/op    c.i.c.c.c.i.c.c.j.JMHSample_11_Loops.measureWrong_1000      avgt   0.035   ns/op    java

可以看到,测试方法里使用循环,会促使JIT进行优化,做循环消除(参考第8章JIT TODO)

1.3.4 单元测试

无论是编写JMH,或者其他性能测试程序,好习惯是先编写一个单元测试用例,以确保性能测试方法的准确性,对于1.3.4的Inline类,可以先编写一个单元测试用例,确保add和addInline返回正确结果

public class InLineTestJunit {
  @Test
  public void test(){
    Inline inline = new Inline();
    inline.init();
    //期望结果
    int expectd = inline.x+inline.y;
    int ret = inline.add();
    int ret2 = inline.addInline();
    Assert.assertEquals(expectd,ret);
    Assert.assertEquals(expectd,ret2);
  }
}

在JMH工程调用maven install 生成测试代码的时候,会进行单元测试,从而保证测试结果的准确


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

SEO深度解析

SEO深度解析

痞子瑞 / 电子工业出版社 / 2014-3-1 / CNY 99.00

《SEO深度解析》以SEO从业人员普遍存在的疑问、经常讨论的问题、容易被忽视的细节以及常见的错误理论为基础,对SEO行业所包含的各方面内容进行了深入的讨论,使读者更加清晰地了解SEO及操作思路。内容分为两类:一类为作者根据自己真实、丰富的SEO经验对SEO所涉及的各种问题进行详细的讨论,主要包括SEO 基础原理剖析、SEO实操思路方法、常用工具数据剖析、竞争对手分析案例实操、网站数据分析思路指导、......一起来看看 《SEO深度解析》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具