只有想不到,「99」种扩展Jupyter功能的好方法

栏目: Python · 发布时间: 5年前

内容简介:当有人说:「你可以用Jupyter扩展解决这个问题」,他们可能没有说清楚是什么样的扩展。Jupyter 生态系统是非常模块化且具有扩展性的,所以有很多种扩展方式。这个博客希望能总结最常用的Jupyter扩展,并帮助你发掘生态系统中的新功能。JupyterLab 是广受欢迎的JupyterNotebook「新」界面。它是一个交互式的开发环境,可用于笔记本、代码或数据,因此它的扩展性非常强。使用相关的扩展,可以添加一整套新功能,或者完全改变界面的运行方式。这些扩展是基于 TypeScript 火 JavaScr

当有人说:「你可以用Jupyter扩展解决这个问题」,他们可能没有说清楚是什么样的扩展。Jupyter 生态系统是非常模块化且具有扩展性的,所以有很多种扩展方式。这个博客希望能总结最常用的Jupyter扩展,并帮助你发掘生态系统中的新功能。

JupyterLab 扩展

只有想不到,「99」种扩展Jupyter功能的好方法 在JupyterLab 中用 jupyterlab-drawio 扩展绘图

JupyterLab 是广受欢迎的JupyterNotebook「新」界面。它是一个交互式的开发环境,可用于笔记本、代码或数据,因此它的扩展性非常强。使用相关的扩展,可以添加一整套新功能,或者完全改变界面的运行方式。这些扩展是基于 TypeScript 火 JavaScript 写的,它们在浏览器里运行。

经典的JupyterNotebook 扩展

只有想不到,「99」种扩展Jupyter功能的好方法 Jupyter Notebook 中的内容列表扩展

人们总是会想到经典的Jupyter笔记本界面,但实际上,你可扩展它的各个模块。这些 JavaScript 客户端可以让你按照自己的想法添加或改变功能,它们和JupyterLab 扩展是一样的。

笔记本服务器扩展(serverextention)

和前两种扩展不同,Jupyter 笔记本的服务器扩展使用 Python 语言编写,并加入了很多服务端的功能,以下有两个主要的例子。

只有想不到,「99」种扩展Jupyter功能的好方法 在JupyterLab 中预览 LaTeX 内容

预览 LaTeX

第一个是一个为JupyterLab 或经典的Jupyter笔记本提供的后端扩展——jupyterlab-latex。它可以在JupyterLab 中预览 LaTeX 文件。它有一个和JupyterLab 文本编辑器集成的扩展,以及一个后端服务器扩展,可以运行 LaTeX 命令,并在前端显示效果。

集成网络应用

第二个则是为提供服务端处理提供用户界面的扩展。因为服务网扩展可以作为任意 TornadoHTTP handler,因此任何你想得到的网络应用都可以写成一个Jupyter服务扩展。这里的例子是 npgipuller,提供了用户界面,可以将 git 代码仓库发布给用户。

Jupyter 内核

你可能已经很熟悉在Jupyter笔记本中使用 Python 语言了,其实你可以在其中运行很多语言:R、Julia、JavaScript、Octave、Scala/Spark、C++、bash,甚至是 Matlab。这些都被称作内核。你可以为自己常用的编程语言写一个内核,将Jupyter协议直接用在上面,用 metakernel 项目打包,或者用 Xeus 打包成 C++依赖。内核制作好以后,它可以在任何一个Jupyter前端运行,包括经典笔记本、JupyterLab、 nteract、Jupyter 命令行等。

IPython Magics

如果你在笔记本里写过如%matplotlib inline 这样的命令,那么你已经尝试过 IPython 功能了。这些命令就像是 Python 中的宏(macro)——你可以写定制化的代码,将剩余的代码块独立出来,然后做自己想做的事情。

这种魔术函数从% 开始,然后通过% 后面的代码发挥功能。例如%cd somedirectory 可以切换 Python 运行中的文件目录。代码块功能从%% 开始,并运行后面的整个块。%%timeit 应该是最著名的,它可以提供运行代码块的时间。

你也可以构建自己的魔术函数。例如,ipython-sql (https://github.com/catherinedevlin/ipython-sql) 包提供%%sql 命令,可以和 sql 数据库无缝工作。然而,和之前列出的扩展不同,IPython 的命令只能在有 IPython 内核的环境工作。

IPython 小工具

只有想不到,「99」种扩展Jupyter功能的好方法 用 drop down 玩转绘图功能

IPython 小 工具 为Jupyter笔记本和 IPython 内核提供了 GUI 工具。这些工具可以让你在共享笔记本时,使用 GUI 调试,而非使用代码。如果和其他工具,如 voila 联用,你可以制作一个类似仪表盘一样的应用,其他人可以直接使用,甚至都不知道这是一个Jupyter笔记本。

你可以自己定制一些工具,为其他人提供领域内的动态可视化。例如,你可以用 ipyleaflet 制作动态地图,用 itk-jupyter-widget 动态地研究图像分割/配准任务,或者用 pythreejs 建模 3D 目标。

内容管理器

内容管理器决定了你读写文件时的操作。默认情况下,管理器从本地文件系统中读写文件,但是一个定制化的管理器可以从其它地方读写文件,如 Amazon S3 / Google Cloud Storage、PostgreSQL、HDFS 等。你可以通过 web 界面读写它们,就好像文件在本地一样。

我最喜欢的内容管理器是 Jupytext。在你读写.ipynb 的文件时,它会将其转换为.py 文件,并保持文件同步。在你 IDE 中对一个.py 文件进行了很多编辑后,可以自动在笔记本中看到这些更新,这是很神奇的事情。

只有想不到,「99」种扩展Jupyter功能的好方法 Jupytext: .ipynb 或者 .py? 我全都要

扩展JupyterHub

JupyterHub 是多用户应用,可以使用于教学、实验室或者生产中。这些组织很可能有其它系统,所以Jupyter需要和这些系统集成到一起。以下是一些扩展JupyterHub 的简单方法。

认证器

JupyterHub 是一个多用户应用,所以用户需要登录,认证器的工作是对登录用户进行身份验证。现在已经有许多流行的验证器了,如 LDAP、OAuth(Google、GitHub、CILogon、Globus、Okta、Canvas 等)。你可以写一个自己需要的认证器,因此JupyterHub 可以覆盖各种使用场景。

生成器(Spawner)

如果使用一个可插拔的生成器,你可以用很多方法给每个用户提供Jupyter笔记本服务器。你可能让他们从一个节点生成 Docker 容器、将它们连接到 Kubernetes 上、让它们使用你的 HPC 集群、或者使用你的 Hadoop 或者 Spark 集群、用 systemd 提供服务、或者直接将这些服务器视为不同的 Linux 用户。这些生成器一般都很容易定制参数,当然你也可以自己写一个。

服务

你有时希望给JupyterHub 用户提供额外服务——在闲置时回收资源,或者让他们发布笔记本。你可以运行一个JupyterHub Service 来提供这些服务。用户可以发起请求,而服务也可以向JupyterHub 发起 API 请求。这些可以是直接的请求,或者网络服务。例如,BinderHub (https://github.com/jupyterhub/binderhub) 是JupyterHub 服务中的一种。

NBConvert Exporter

Nbconvert 扩展可以令笔记本格式的文件和其他格式相互转换。如果你导出笔记本到 PDF、LaTeX、HTML 或者 nbviwer 的话,你已经使用了这个扩展。在这个扩展里,对应每一个格式都有一个导出器,你也可以写一个针对自己格式的导出器,或者可以利用已有的定制一个。

在写这篇博客时,我最开心的时刻是发现有 docx 文档(word)导出器。

word 导出器:https://github.com/m-rossi/jupyter-docx-bundler

Bundler 扩展

只有想不到,「99」种扩展Jupyter功能的好方法 很容易就能找到 nbconvert 导出器的方法

Bundler 扩展使你可以在菜单栏添加「下载为」按钮。这个按钮和 nbconvert 导出器联用,使得导出器更容易被找到,尽管你可以写一个定制化的扩展,使笔记本在下载前进行任何操作。例如,nbreport 扩展提供一个 bundler 扩展,可以将笔记本格式导出为 HTML。

Repo2Docker

Repo2Docker 扩展将 git 或者其他仓库转换为可重新使用、适合于数据科学的 docker 镜像。网站 mybinder.org(和其他 binderhub 安装包)使用这个扩展构建和运行Jupyter/RStudio 进程。如下所示,现在有两种扩展 repo2docker 的方式。

BuildPacks

Repo2docker 会查看代码库中的内容,并决定如何去构建它。例如,如果里面有 requirements.txt 文件,它会设置一个小型 conda 环境,并把 Python 包安装进去。如果里面有 install.R 文件,扩展则会保证 R/RStudio 已经安装。写一个 BuildPack (https://repo2docker.readthedocs.io/en/latest/architecture.html#buildpacks) 使你可以将这个功能扩展到你喜欢的编程语言中。

ContentProviders

Repo2docker 中的 repo 部分有点用词不当——实际上你可以将任何程序打包进一个 Docker 镜像中。现在,它支持 git 本地文件夹和 zenodo (https://zenodo.org/) 代码仓库,但是你可以为自己喜欢的代码源添加支持,并制作一个新的 ContentProvider。

只有这些了吗?

当然不是!Jupyter 生态是一个很大的系统,一篇博客无法完全覆盖所有内容。这个博客已经少了一些,如 enterprise gateway 和 TLJH Plugins。Jupyter 的生态是活跃多变的,很快还有更多好用的扩展出现。


以上所述就是小编给大家介绍的《只有想不到,「99」种扩展Jupyter功能的好方法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Node.js开发指南

Node.js开发指南

郭家寶(BYVoid) / 人民邮电出版社 / 2012-7 / 45.00元

Node.js是一种方兴未艾的新技术,诞生于2009年。经过两年的快速变化,Node.js生态圈已经逐渐走向稳定。Node.js采用了以往类似语言和框架中非常罕见的技术,总结为关键词就是:非阻塞式控制流、异步I/O、单线程消息循环。不少开发者在入门时总要经历一个痛苦的思维转变过程,给学习带来巨大的障碍。 而本书的目的就是帮助读者扫清这些障碍,学会使用Node.js进行Web后端开发,同时掌握事件驱......一起来看看 《Node.js开发指南》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具