新增21篇! | CVPR 2019 论文实现代码

栏目: 编程工具 · 发布时间: 5年前

内容简介:注:本文的相关链接请访问文末【阅读原文】CVPR 2019已经过去了,今年你的论文中了吗?没有中的是否已经看完了全部CVPR 2019 论文了呢?没有中的和没有看完的小伙伴不要着急,没有关系。助助已经整理好了CVPR 2019 论文实现代码一共55篇的复现,后续也会持续更新,有兴趣的小伙伴可以加入AI研习社CVPR小组。

新增21篇! | CVPR 2019 论文实现代码

注:本文的相关链接请访问文末【阅读原文】

CVPR 2019已经过去了,今年你的论文中了吗?没有中的是否已经看完了全部CVPR 2019 论文了呢?没有中的和没有看完的小伙伴不要着急,没有关系。助助已经整理好了CVPR 2019 论文实现代码一共55篇的复现,后续也会持续更新,有兴趣的小伙伴可以加入AI研习社CVPR小组。

大家赶紧看起来啦!

  1. 《C3AE: Exploring the Limits of Compact Model for Age Estimation》(CVPR 2019) 

    GitHub地址:https://github.com/vicwer/C3AE_Age_Estimation

  2. 《BubbleNets: Learning to Select the Guidance Frame in Video Object Segmentation by Deep Sorting Frames》(CVPR 2019) 

    GitHub地址:https://github.com/griffbr/BubbleNets

  3. 《ELASTIC: Improving CNNs with Dynamic Scaling Policies》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/allenai/elastic

  4. 《SelFlow: Self-Supervised Learning of Optical Flow》 (CVPR 2019 Oral) 

    GitHub地址:https://github.com/ppliuboy/SelFlow

  5. 《HAQ: Hardware-Aware Automated Quantization with Mixed Precision》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/mit-han-lab/HAQ

  6. 《Improving Semantic Segmentation via Video Propagation and Label Relaxation》(CVPR 2019 ) 

    GitHub地址:https://github.com/NVIDIA/semantic-segmentation

  7. 《Bi-Directional Cascade Network for Perceptual Edge Detection(BDCN)》(CVPR 2019 ) 

    GitHub地址:https://github.com/pkuCactus/BDCN

  8. 《Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition》(CVPR 2019) 

    GitHub地址:https://github.com/lshiwjx/2s-AGCN

  9. 《Learning joint reconstruction of hands and manipulated objects》(CVPR 2019) 

    GitHub地址:https://github.com/hassony2/obman_train

    https://github.com/hassony2/obman

  10. 《AOGNets: Compositional Grammatical Architectures for Deep Learning》(CVPR 2019) 

    GitHub地址:https://github.com/iVMCL/AOGNets

  11. 《Neural Rejuvenation: Improving Deep Network Training by Enhancing Computational Resource Utilization》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/joe-siyuan-qiao/NeuralRejuvenation-CVPR19

  12. 《Finding Task-Relevant Features for Few-Shot Learning by Category Traversal》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/Clarifai/few-shot-ctm

  13. 《Self-supervised 3D hand pose estimation through training by fitting》(CVPR 2019) 

    GitHub地址:https://github.com/melonwan/sphereHand

  14. 《MOTS: Multi-Object Tracking and Segmentation》(CVPR 2019) 

    GitHub地址:https://github.com/VisualComputingInstitute/mots_tools

  15. 《Segmentation-driven 6D Object Pose Estimation》(CVPR 2019) 

    GitHub地址:https://github.com/cvlab-epfl/segmentation-driven-pose

  16. 《Timeception for Complex Action Recognition》(CVPR 2019) 

    GitHub地址:https://github.com/noureldien/timeception

  17. 《GoodNews Everyone! Context driven entity aware captioning for news images》(CVPR 2019) 

    GitHub地址:https://github.com/furkanbiten/GoodNews

  18. 《Structured Knowledge Distillation for Semantic Segmentation》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/irfanICMLL/structure_knowledge_distillation

  19. 《Self-supervised Spatio-temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics》(CVPR 2019) 

    GitHub地址:https://github.com/laura-wang/video_repres_mas

  20. 《Object-driven Text-to-Image Synthesis via Adversarial Training》(CVPR 2019) 

    GitHub地址:https://github.com/jamesli1618/Obj-GAN

  21. 《Monocular Total Capture: Posing Face, Body and Hands in the Wild》(CVPR 2019) 

    GitHub地址:https://github.com/CMU-Perceptual-Computing-Lab/MonocularTotalCapture

  22. 《Shapes and Context: In-the-wild Image Synthesis & Manipulation》(CVPR 2019) 

    GitHub地址:https://github.com/aayushbansal/OpenShapes

  23. 《Robust Point Cloud Based Reconstruction of Large-Scale Outdoor Scenes》(CVPR 2019) 

    GitHub地址:https://github.com/ziquan111/RobustPCLReconstruction

  24. 《DAVANet: Stereo Deblurring with View Aggregation》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/sczhou/DAVANet

  25. 《Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/RoyalVane/CLAN

  26. 《PPGNet: Learning Point-Pair Graph for Line Segment Detection》(CVPR 2019)

    GitHub地址:https://github.com/svip-lab/PPGNet

  27. 《Distilling Object Detectors with Fine-grained Feature Imitation》(CVPR 2019) 

    GitHub地址:https://github.com/twangnh/Distilling-Object-Detectors

  28. 《3D Hand Shape and Pose Estimation from a Single RGB Image》(CVPR 2019) 

    GitHub地址:https://github.com/3d-hand-shape/hand-graph-cnn

  29. 《Wide-Context Semantic Image Extrapolation》(CVPR 2019)

    GitHub地址:https://github.com/shepnerd/outpainting_srn

  30. 《Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/taki0112/GDWCT-Tensorflow

  31. 《Learning Non-volumetric Depth Fusion using Successive Reprojections》(CVPR 2019) 

    GitHub地址:https://github.com/simon-donne/defusr

  32. 《Disentangled Representation Learning for 3D Face Shape》(CVPR 2019) 

    GitHub地址:https://github.com/zihangJiang/DR-Learning-for-3D-Face

  33. 《Pixel-Adaptive Convolutional Neural Networks》(CVPR 2019)

    GitHub地址:https://github.com/NVlabs/pacnet

  34. 《Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers(AdaFM)》(CVPR 2019 oral) 

    GitHub地址:https://github.com/hejingwenhejingwen/AdaFM

  35. 《Taking a Deeper Look at the Inverse Compositional Algorithm》 (CVPR 2019 Oral) 

    GitHub地址:https://github.com/lvzhaoyang/DeeperInverseCompositionalAlgorithm

  36. 《Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-grained Image Recognition》(CVPR 2019) 

    GitHub地址:https://github.com/Heliang-Zheng/TASN

  37. 《Multi-Target Embodied Question Answering》(CVPR 2019)

    GitHub地址:https://github.com/lichengunc/mteqa

  38. 《Learning Context Graph for Person Search》(CVPR 2019 Oral) 

    GitHub地址:https://github.com/sjtuzq/person_search_gcn

  39. 《Generating Classification Weights with GNN Denoising Autoencoders for Few-Shot Learning》(CVPR 2019) 

    GitHub地址:https://github.com/gidariss/wDAE_GNN_FewShot

  40. 《Learning Parallax Attention for Stereo Image Super-Resolution》(CVPR 2019) 

    GitHub地址:https://github.com/LongguangWang/PASSRnet

  41. 《Meta-SR: A Magnification-Arbitrary Network for Super-Resolution》(CVPR2019) 

    GitHub地址:https://github.com/XuecaiHu/Meta-SR-Pytorch

  42. 《Learning Actor Relation Graphs for Group Activity Recognition》(CVPR 2019) 

    GitHub地址:https://github.com/wjchaoGit/Group-Activity-Recognition

  43. 《HorizonNet: Learning Room Layout with 1D Representation and Pano Stretch Data Augmentation》(CVPR 2019) 

    GitHub地址:https://github.com/sunset1995/HorizonNet

  44. 《3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans》(CVPR 2019 Oral)

    GitHub地址:https://github.com/Sekunde/3D-SIS

  45. 《Exploiting temporal context for 3D human pose estimation in the wild》(CVPR 2019)

    GitHub地址:https://github.com/deepmind/Temporal-3D-Pose-Kinetics

  46. 《Zoom To Learn, Learn To Zoom》(CVPR 2019)

    GitHub地址:https://github.com/ceciliavision/zoom-learn-zoom

  47. 《Generalized Intersection over Union》(CVPR 2019)

    GitHub地址:https://github.com/generalized-iou/Detectron.pytorch

  48. 《Reliable and Efficient Image Cropping: A Grid Anchor based Approach》(CVPR 2019)

    GitHub地址:https://github.com/HuiZeng/Grid-Anchor-based-Image-Cropping

  49. 《Semantic Image Synthesis with Spatially-Adaptive Normalization Taesung》(CVPR 2019)

    GitHub地址:https://github.com/divyanshj16/SPADE

  50. 《4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks》(CVPR 2019)

    GitHub地址:https://github.com/StanfordVL/MinkowskiEngine

  51. 《Knowledge-Embedded Routing Network for Scene Graph Generation》(CVPR 2019)

    GitHub地址:https://github.com/yuweihao/KERN

  52. 《Deep Flow-Guided Video Inpainting》(CVPR 2019)

    GitHub地址:https://github.com/nbei/Deep-Flow-Guided-Video-Inpainting

  53. 《onvolutional Mesh Regression for Single-Image Human Shape Reconstruction》(CVPR2019)

    GitHub地址:https://github.com/nkolot/GraphCMR

  54. 《Capture, Learning, and Synthesis of 3D Speaking Styles》(CVPR 2019)

    GitHub地址:https://github.com/TimoBolkart/voca

  55. 《Meta-Transfer Learning for Few-Shot Learning》 (CVPR 2019)

    GitHub地址:https://github.com/y2l/meta-transfer-learning-tensorflow

现在来 AI 研习社 CVPR顶会交流小组 ,还有机会获得 AI 研习社定制周边哦!

新增21篇! | CVPR 2019 论文实现代码

你可能还想看

新增21篇! | CVPR 2019 论文实现代码

新增21篇! | CVPR 2019 论文实现代码

新增21篇! | CVPR 2019 论文实现代码   点击 阅读原文 ,围观 CVPR 2019


以上所述就是小编给大家介绍的《新增21篇! | CVPR 2019 论文实现代码》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

游戏编程权威指南

游戏编程权威指南

Mike McShaffry 麦克沙福瑞、David “Rez” Graham 格雷海姆 / 师蓉、李静、李青翠 / 人民邮电 / 2016-3 / 99.00元

全书分为4个部分共24章。首部分是游戏编程基础,主要介绍了游戏编程的定义、游戏架构等基础知识。 第二部分是让游戏跑起来,主要介绍了初始化和关闭代码、主循环、游戏主题和用户界面等。 第三部分是核心游戏技术,主要介绍了一些*为复杂的代码 示例,如3D编程、游戏音频、物理和AI编程等。 第四部分是综合应用,主要介绍了网络编程、多道程序设计和用C#创建工具等,并利用前面所讲的 知识开发出......一起来看看 《游戏编程权威指南》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换