内容简介:版权声明: 本文为博主原创文章,发表自知一的指纹。转载需向运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
版权声明: 本文为博主原创文章,发表自知一的指纹。转载需向 我的邮箱 申请。
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
链接: https://leetcode-cn.com/problems/lru-cache
from collections import OrderedDict
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self._cache = OrderedDict()
self._size = capacity
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key not in self._cache:
return -1
val = self._cache.pop(key)
self._cache[key] = val
return val
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: None
"""
if key in self._cache:
self._cache.pop(key)
self._cache[key] = value
else:
if len(self._cache) == self._size:
self._cache.popitem(last=False)
self._cache[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
有序字典的解法
时间复杂度 O(1)
空间复杂度 O(capacity)
Java 解法需要 LinkedHashMap TODO
LRU(Least Recently Used)最少最近使用,一种页面置换算法。
LFU(Least Frequently Used)最近最不常用。
如果此文章能给您带来小小的提升,不妨小额赞赏我一下,以鼓励我写出更好的文章!
微信打赏
支付宝打赏
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 轻松学会HTTP缓存(强缓存,协商缓存)
- 常见面试题之缓存雪崩、缓存穿透、缓存击穿
- HTTP缓存 - 强缓存/协商缓存/浏览器刷新
- mybatis教程--查询缓存(一级缓存二级缓存和整合ehcache)
- 如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
- 缓存穿透和缓存击穿处理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
python学习手册(原书第5版)
马克·卢茨 / 机械工业出版社 / 2018-10 / 219
如果你想动手编写高效、高质量并且很容易与其他语言和工具集成的代码,本书将快速地帮助你利用Python提高效率。本书基于Python专家的流程培训课程编写,内容通俗易懂。本书包含很多注释的例子和插图,以帮助你开始使用Python2.7和3.3。每章都包含关于Python语言的重要组成部分的一节课。本书主要内容:了解Python的主要内置对象类型,如数字、列表和字典;创建和处理对象的Python语句,......一起来看看 《python学习手册(原书第5版)》 这本书的介绍吧!