燃爆!17行Python代码做情感分析?你也可以的

栏目: Python · 发布时间: 5年前

内容简介:github:https://github.com/PaddlePaddle/PaddleHub/blob/release/v0.5.0/demo/senta/senta_demo.py总结,三个不同类别的测评如下所示:1.模型计算耗时较小,使用体验不错。

17行代码跑最新NLP模型?你也可以!

  • 本次作者评测所需(防吓退)
  1. 一台可以上网的电脑
  2. 基本的 python 代码阅读能力,用于修改几个模型参数
  3. 对百度中文NLP最新成果的浓烈兴趣
  • 训练模型:Senta情感分析模型基本简介
Senta是百度NLP开放的中文情感分析模型,可以用于进行中文句子的情感分析,输出结果为{正向/中性/负向}中的一个,关于模型的结构细节,请查看Senta----github.com/PaddlePaddle/Paddlehub/demo/senta 
  • 本示例代码选择的是Senta-BiLSTM模型。
  • 模型来源:Paddlehub简介
PaddleHub是基于PaddlePaddle开发的预训练模型管理工具,可以借助预训练模型更便捷地开展迁移学习工作。 
  • 本次评测中只使用了预训练模型,没有进行fine-tune
  • 代码运行环境:百度 AI studio
燃爆!17行Python代码做情感分析?你也可以的

实验代码

  • 来自paddlehub/senta_demo.py

github:https://github.com/PaddlePaddle/PaddleHub/blob/release/v0.5.0/demo/senta/senta_demo.py

from __future__ import print_function 
import json 
import os 
import six 
import paddlehub as hub 
if __name__ == "__main__": 
 # 加载senta模型 
 senta = hub.Module(name="senta_bilstm") 
 # 把要测试的短文本以str格式放到这个列表里 
 test_text = [ 
 "这家餐厅不是很好吃", 
 "这部电影差强人意", 
 ] 
 # 指定模型输入 
 input_dict = {"text": test_text} 
 # 把数据喂给senta模型的文本分类函数 
 results = senta.sentiment_classify(data=input_dict) 
 # 遍历分析每个短文本 
 for index, text in enumerate(test_text): 
 results[index]["text"] = text 
 for index, result in enumerate(results): 
 if six.PY2: 
 print( 
 json.dumps(results[index], encoding="utf8", ensure_ascii=False)) 
 else: 
 print('text: {},    predict: {}'.format(results[index]['text'],results[index]['sentiment_key'])) 

详细测评

成语情感分析

input

test_text = [ 
 '沧海桑田', # 中型,世事变化很大 
 '下里巴人', # 褒义,通俗的文学艺术 
 '有口皆碑', # 褒义,对突出的好人好事一致颂扬 
 '危言危行', # 褒义,说正直的话,做正直的事 
 '鬼斧神工', # 褒义,指大自然美景 
 '不赞一词', # 褒义,不能再添一句话,表示写的很好 
 '文不加点', # 褒义,指写作技巧高超 
 '差强人意', # 褒义,大体还能使人满意 
 '无微不至', # 褒义,指细心周到 
 '事倍功半', # 褒义,指不费力就有好的效果 
 '事半功倍', # 贬义,指浪费了力气却没有好效果 
 '蠢蠢欲动', # 贬义,指要干坏事 
 '面目全非', # 贬义,指大破坏 
 '江河日下', # 贬义,指事物日渐衰落 
 '评头论足', # 贬义,指小节过分挑剔 
 '生灵涂炭', # 贬义,指人民极端困苦 
 '始作俑者', # 贬义,第一个做坏事的人 
 '无所不为', # 贬义,什么坏事都干 
 '无所不至', # 贬义,什么坏事都干 
 '阳春白雪', # 贬义,高深不容易理解的艺术 
 ]

output

运行耗时: 4秒480毫秒 
text: 沧海桑田, positive_prob: 0.3838, predict: negative # 错误 
text: 下里巴人, positive_prob: 0.7957, predict: positive  
text: 有口皆碑, positive_prob: 0.906, predict: positive 
text: 危言危行, positive_prob: 0.588, predict: positive 
text: 鬼斧神工, positive_prob: 0.657, predict: positive 
text: 不赞一词, positive_prob: 0.9698, predict: positive 
text: 文不加点, positive_prob: 0.1284, predict: negative # 错误 
text: 差强人意, positive_prob: 0.0429, predict: negative # 错误 
text: 无微不至, positive_prob: 0.8997, predict: positive 
text: 事倍功半, positive_prob: 0.6181, predict: positive 
text: 事半功倍, positive_prob: 0.8558, predict: positive # 错误 
text: 蠢蠢欲动, positive_prob: 0.7353, predict: positive # 错误 
text: 面目全非, positive_prob: 0.2186, predict: negative 
text: 江河日下, positive_prob: 0.2753, predict: negative 
text: 评头论足, positive_prob: 0.6737, predict: positive # 错误 
text: 生灵涂炭, positive_prob: 0.4661, predict: neutral # 错误 
text: 始作俑者, positive_prob: 0.247, predict: negative 
text: 无所不为, positive_prob: 0.5948, predict: positive # 错误 
text: 无所不至, positive_prob: 0.553, predict: positive # 错误 
text: 阳春白雪, positive_prob: 0.7552, predict: positive # 错误 

正确率:10/20 = 50%

转折复句情绪分析

input

test_text = [ 
 '小明虽然考了第一,但是他一点也不骄傲', # 积极  
 '你不是不聪明,而是不认真', # 消极 
 '虽然小明很努力,但是他还是没有考100分', # 消极  
 '虽然小明有时很顽皮,但是他很懂事', # 积极  
 '虽然这座桥已经建了很多年,但是她依然很坚固', # 积极  
 '他虽然很顽皮,但是学习很好', # 积极 
 '学习不是枯燥无味,而是趣味横生', # 积极  
 '虽然很困难,但是我还是不会退缩', # 积极  
 '虽然小妹妹只有5岁,但是她能把乘法口诀倒背如流', # 积极  
 '虽然我很过分,但是都是为了你好', # 积极  
 '小明成绩不好,不是因为不聪明,而是因为不努力', # 消极  
 '虽然这样做不妥当,但已经是最好的选择', # 积极  
 '这次虽然失败,但却是成功的开始', # 积极 
 '虽然这道题很难,但是我相信我会把它做出来', # 积极  
 '虽然爷爷已经很老了,但是他还是坚持每天做运动', # 积极  
 '不是没有美,而是我们缺少发现美的眼光', # 消极  
 '虽然他们有良好的生活条件,但是浪费资源迟早会带来恶果', # 消极  
 '他不是我们的敌人,而是我们的朋友', # 积极  
 '他不是不会做,而是不想做', # 消极 
 '虽然那个梦想看起来离我遥不可及,但是我相信经过我的努力它一定会实现', # 积极 
 ] 

output

运行耗时: 2秒667毫秒 
text: 小明虽然考了第一,但是他一点也不骄傲, positive_prob: 0.9598, 
 predict: positive  
text: 你不是不聪明,而是不认真, positive_prob: 0.0275, 
 predict: negative 
text: 虽然小明很努力,但是他还是没有考100分, positive_prob: 0.7188, 
 predict: positive # 错误 
text: 虽然小明有时很顽皮,但是他很懂事, positive_prob: 0.8776, 
 predict: positive 
text: 虽然这座桥已经建了很多年,但是她依然很坚固, positive_prob: 0.9782, 
 predict: positive 
text: 他虽然很顽皮,但是学习很好, positive_prob: 0.9181, 
 predict: positive 
text: 学习不是枯燥无味,而是趣味横生, positive_prob: 0.3279, 
 predict: negative # 错误 
text: 虽然很困难,但是我还是不会退缩, positive_prob: 0.3974, 
 predict: negative # 错误 
text: 虽然小妹妹只有5岁,但是她能把乘法口诀倒背如流, positive_prob: 0.5124, 
 predict: neutral 
text: 虽然我很过分,但是都是为了你好, positive_prob: 0.399, 
 predict: negative # 错误 
text: 小明成绩不好,不是因为不聪明,而是因为不努力, positive_prob: 0.1881, 
 predict: negative 
text: 虽然这样做不妥当,但已经是最好的选择, positive_prob: 0.806, 
 predict: positive 
text: 这次虽然失败,但却是成功的开始, positive_prob: 0.4862, 
 predict: neutral # 错误 
text: 虽然这道题很难,但是我相信我会把它做出来, positive_prob: 0.3959, 
 predict: negative # 错误 
text: 虽然爷爷已经很老了,但是他还是坚持每天做运动, positive_prob: 0.9178, 
 predict: positive 
text: 不是没有美,而是我们缺少发现美的眼光, positive_prob: 0.5614, 
 predict: positive 
text: 虽然他们有良好的生活条件,但是浪费资源迟早带来恶果, positive_prob: 0.1086, 
 predict: negative 
text: 他不是我们的敌人,而是我们的朋友, positive_prob: 0.3749, 
 predict: negative # 错误 
text: 他不是不会做,而是不想做, positive_prob: 0.1247, 
 predict: negative  
text: 虽然那个梦想看起来离我遥不可及,但是我相信经过我的努力它一定会实现, positive_prob: 0.957, 
 predict: positive 

正确率:13/20 = 65%

具体场景情绪分析

input

test_text = [ 
 '这车耗油很快',  
 '这车开的很快', 
 '这房间有一股死老鼠味道', 
 '这房间有烟味', 
 '他的发型像杀马特', 
 '这衣服机洗掉色', 
 '这衣服穿多了起球', 
 '这软件容易闪退', 
 '他打球的样子像蔡徐坤', 
 '这把20了', 
 '这把可以打', 
 '他射球的样子像科比', 
 '这房间的布置很有情调', 
 '这酒让人回味', 
 '这衣服很酷', 
 '他的侧脸好像林峰', 
 '五星好评', 
 '以后会回购的', 
 '性价比很高', 
 '物美价廉', 
 '这女生让我心动' 
 ] 

output

运行耗时: 2秒676毫秒 
text: 这车耗油很快, positive_prob: 0.2926, predict: negative 
text: 这车开的很快, positive_prob: 0.8478, predict: positive 
text: 这房间有一股死老鼠味道, positive_prob: 0.0071, predict: negative 
text: 这房间有烟味, positive_prob: 0.2071, predict: negative 
text: 他的发型像杀马特, positive_prob: 0.3445, predict: negative 
text: 这衣服机洗掉色, positive_prob: 0.3912, predict: negative 
text: 这衣服穿多了起球, positive_prob: 0.679, predict: positive # 错误 
text: 这软件容易闪退, positive_prob: 0.0051, predict: negative 
text: 他打球的样子像蔡徐坤, positive_prob: 0.8684, predict: positive # 错误 
text: 这把20了, positive_prob: 0.1695, predict: negative 
text: 这把可以打, positive_prob: 0.3503, predict: negative # 错误 
text: 他射球的样子像科比, positive_prob: 0.7263, predict: positive 
text: 这房间的布置很有情调, positive_prob: 0.9519, predict: positive 
text: 这酒让人回味, positive_prob: 0.7431, predict: positive 
text: 这衣服很酷, positive_prob: 0.9817, predict: positive 
text: 他的侧脸好像林峰, positive_prob: 0.5621, predict: positive 
text: 五星好评, positive_prob: 0.9971, predict: positive 
text: 以后会回购的, positive_prob: 0.6903, predict: positive 
text: 性价比很高, positive_prob: 0.9799, predict: positive 
text: 物美价廉, positive_prob: 0.9542, predict: positive 
text: 这女生让我心动, positive_prob: 0.956, predict: positive 

正确率:17/20 = 85%

总结,三个不同类别的测评如下所示:

燃爆!17行Python代码做情感分析?你也可以的

总结

1.模型计算耗时较小,使用体验不错。

2.成语情感分析方面,我专门挑选的是一些比较难从字面理解的,容易混淆情感的成语(比如差强人意被判定为消极),这些也是高考常考的内容。虽然最后模型正确率只有一般,但是我认为是可以接受的,适当增加成语语句作为训练语料会使模型"更懂"中文。

大家有兴趣的可以试一试一些比较容易从字面理解情感的成语,我觉得得分会比本次评测的结果要好。

3.转折语句情感分析本身也是对模型的一种挑战,实测效果为65分,个人觉得模型对于像“但是”,“虽然”这样的词语没有足够的attention,因为这些转折词背后的语义往往才是最影响整个句子的情感的,最终评分65分,个人认为模型在这方面表现一般。

4.评分最好看的是具体场景情感分析,大概预训练语料中有大量的淘宝评价?像杀马特 20 科比 这些小字眼是判定情感的关键,而模型也确实捕捉到并判断出来了,这点比较让我惊喜。


以上所述就是小编给大家介绍的《燃爆!17行Python代码做情感分析?你也可以的》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法技术手册(原书第2版)

算法技术手册(原书第2版)

George T. Heineman、Gary Pollice、Stanley Selkow / 杨晨、曹如进 / 机械工业出版社 / 2017-8-1 / 89.00元

本书使用实际代码而非伪代码来描述算法,并以经验主导支撑数学分析,侧重于应用且规范严谨。本书提供了用多种程序设计语言实现的文档化的实际代码解决方案,还介绍了近40种核心算法,其中包括用于计算点集的Voronoi图的Fortune算法、归并排序、多线程快速排序、AVL平衡二叉树实现以及空间算法。一起来看看 《算法技术手册(原书第2版)》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

html转js在线工具
html转js在线工具

html转js在线工具