AVL 树的左旋转、右旋转

栏目: 编程工具 · 发布时间: 5年前

内容简介:在文章什么是 AVL 树?中,我们讲解了 AVL 树的基本概念,以及它存在的意义。这篇文章,我们来讲解如何维护 AVL 树的平衡性。AVL树是一棵「自平衡」的 BST(二分搜索树),也就说,它需要一种机制来维护 BST 的平衡性。这种机制就是左旋转和右旋转。右旋转「旋转」其实就是移动 BST 中节点的位置,使节点的平衡因子为0、-1、1。当左子树发生不平衡,需要使用右旋转来达到平衡性。图中的节点 Y(4)为不平衡节点,T1,T2,T3,T4 均平衡,满足 T1 < z < T2 < x < T3 < y <

在文章什么是 AVL 树?中,我们讲解了 AVL 树的基本概念,以及它存在的意义。这篇文章,我们来讲解如何维护 AVL 树的平衡性。AVL树是一棵「自平衡」的 BST(二分搜索树),也就说,它需要一种机制来维护 BST 的平衡性。这种机制就是左旋转和右旋转。

右旋转

「旋转」其实就是移动 BST 中节点的位置,使节点的平衡因子为0、-1、1。当左子树发生不平衡,需要使用右旋转来达到平衡性。图中的节点 Y(4)为不平衡节点,T1,T2,T3,T4 均平衡,满足 T1 < z < T2 < x < T3 < y < T4。

AVL 树的左旋转、右旋转

右旋转其实很简单,按照下面的操作即可:


 

TreeNode *t3 = x.right;

x.right = y;

y.left = t3;

旋转后的 AVL 树是这样的,旋转后任然满足 BST 的条件,可以通过 T1 < z < T2 < x < T3 < y < T4 这个条件推导:

AVL 树的左旋转、右旋转

左旋转

当右子树发生不平衡时, 右子树的高度比左子树的高度大于 1 ,需要进行「左旋转」。比如下面这颗树失去了平衡性,不平衡节点为 Y,满足:T4<Y<T3<X<T2<Z<T1:

AVL 树的左旋转、右旋转

左旋转其实很简单,按照下面的操作即可:


 

TreeNode *t3 = x.left;

x.left = y;

y.right = t3;

旋转后的 AVL 树是这样的,旋转后任然满足 BST 的条件:

AVL 树的左旋转、右旋转

至此,我们学习了什么是 AVL 树,当由于插入新节点破坏 AVL 树的平衡性后(平衡因子不为 -1、0、1),通过左、右旋转来重新达到平衡性。 前面我们也动手用 Swift 实现了一颗 BST(二分搜索树) 使用 Swift 实现一颗二分搜索树 这一切其实都是为了下一篇文章做准备: 用 Swift 实现一颗 AVL 树。

推荐阅读:

图解数据结构和算法

AVL 树的左旋转、右旋转


以上所述就是小编给大家介绍的《AVL 树的左旋转、右旋转》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java数据结构和算法

Java数据结构和算法

拉佛 / 计晓云 / 中国电力出版社 / 2004-02-01 / 55.00元

《Java数据结构和算法》(第2版)以一种易懂的方式教授如何安排和操纵数据的问题,其中不乏一些难题:了解这些知识以期使计算机的应用获得最好的表现。不管使用何种语言或平台,掌握了数据结构和算法将改进程序的质量和性能。 《Java数据结构和算法》(第2版)提供了一套独创的可视讨论专题用以阐明主要的论题:它使用Java语言说明重要的概念,而避免了C/C++语言的复杂性,以便集中精力论述数据结构和算法。经......一起来看看 《Java数据结构和算法》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码