Python 绘制 3 维以上的高维图

栏目: Python · 发布时间: 6年前

内容简介:实用技巧。我们的大脑通常最多能感知三维空间,超过三维就很难想象了。尽管是三维,理解起来也很费劲,所以大多数情况下都使用二维平面。不过,我们仍然可以绘制出多维空间,今天就来用 Python 的 plotly 库绘制下三维到六维的图,看看长什么样。数据我们使用一份来自

实用技巧。

我们的大脑通常最多能感知三维空间,超过三维就很难想象了。尽管是三维,理解起来也很费劲,所以大多数情况下都使用二维平面。不过,我们仍然可以绘制出多维空间,今天就来用 Python 的 plotly 库绘制下三维到六维的图,看看长什么样。

数据我们使用一份来自 UCI真实汽车数据集 ,该数据集包括 205 个样本和 26 个特征,从中选择 6 个特征来绘制图形:

Python 绘制 3 维以上的高维图

基础工作

安装好 plotly 包:

pip install plotly

加载数据集(文末会提供):

import pandas as pd
data = pd.read_csv("cars.csv")

下面我们先绘制基础的二维图表,使用两个 RPM 和 Speed 两个特征即可:

绘制 2-D 图

Python 绘制 3 维以上的高维图

代码实现如下:

import plotly
import plotly.graph_objs as go

#绘制散点图
fig1 = go.Scatter(x=data['curb-weight'],
                  y=data['price'],
                  mode='markers')

#绘制布局
mylayout = go.Layout(xaxis=dict(title="curb-weight"),
                     yaxis=dict( title="price"))

#绘图 html
plotly.offline.plot({"data": [fig1],
                     "layout": mylayout},
                     auto_open=True)

保存为 html 文件打开可以生成交互界面,也可以保存为 png 图片。

下面增加特征来绘制三维图。

绘制 3-D 图

可以 使用 plotly 的 plot.Scatter3D 方法绘制三维图:

Python 绘制 3 维以上的高维图

代码实现如下:

fig1 = go.Scatter3d(x=data['curb-weight'],
                    y=data['horsepower'],
                    z=data['price'],
                    marker=dict(opacity=0.9,
                                reversescale=True,
                                colorscale='Blues',
                                size=5),
                    line=dict (width=0.02),
                    mode='markers')

mylayout = go.Layout(scene=dict(xaxis=dict( title="curb-weight"),
                                yaxis=dict( title="horsepower"),
                                zaxis=dict(title="price")),)

plotly.offline.plot({"data": [fig1],
                     "layout": mylayout},
                     auto_open=True,
                     filename=("3DPlot.html"))

如何绘制更高维度的图呢?显然无法通过扩展坐标轴的形式,不过有个小技巧就是制造一个虚拟维度,可以用不同颜色、形状大小、形状类别来入手。这样就可以显示第四个维度了。

绘制 4-D 图

下面我们将第四个变量——车辆油耗(city-mpg)添加到原先的三维图中,用颜色深浅表示,这样就绘制出了四维图。可以看到当其他三个指标(马力、车身重量、车价格)越高时:车辆油耗是越少的。

Python 绘制 3 维以上的高维图

绘制 5-D 图

基于这样的思想,我们还可以通过修改圆形大小再增加一个维度——发动机尺寸(engine-size)变成五维图:

Python 绘制 3 维以上的高维图

我们仍然可以比较容易地地发现:车越贵,发动机尺寸越大这样的规律。

绘制 6-D 图

接着还可以通过更改形状的方式增加第六个维度——车门数,圆形表示四车门,方形表示两车门。通常两个车门的都是昂贵的豪华跑车,在图中也可以看出方形主要集中在价格比较高的区域。

Python 绘制 3 维以上的高维图

这样我们就从普通的二维图扩展到了高维图,当然还可以继续拓展,不过分辨起来会越来越困难。

作者: Prasad Ostwal

链接: https://medium.com/@prasadostwal/multi-dimension-plots-in-python-from-2d-to-6d-9a2bf7b8cc74

文中代码可以在后台回复: 6D 得到。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Learning jQuery

Learning jQuery

Jonathan Chaffer、Karl Swedberg / Packt Publishing / 2007-7-7 / GBP 24.99

jQuery is a powerful JavaScript library that can enhance your websites regardless of your background. In this book, creators of the popular jQuery learning resource, learningquery.com, share the......一起来看看 《Learning jQuery》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具