8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

栏目: 软件资讯 · 发布时间: 6年前

内容简介:来自Facebook何恺明团队,比以往都强大它叫注:WSL是弱监督学习,不是Windows里面的Linux。

栗子 发自 凹非寺

量子位 报道 | 公众号 QbitAI

来自Facebook何恺明团队,比以往都强大 ResNeXt 预训练模型开源了。

它叫 ResNeXt WSL ,有超过 8亿 个参数,用Instagram上面的 9.4亿 张图做了 (弱监督预训练) , 用ImageNet做了微调

注:WSL是弱监督学习,不是Windows里面的Linux。

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

ImageNet测试中,它的 (32×48d) 分类准确率达到 85.4% (Top-1) ,打破了从前的纪录。

LeCun大佬作为公司首席AI科学家,转推了开源的喜讯,而后众人奔走相告,赞数已经超过 1600

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

评论区涌起了难以置信的声音:

拿ImageNet做微调??

我头一次听说,在更大的预训练集面前, ImageNet成了微调用的小语料库

9.4亿张图?谁能做完这么多计算?

所以现在好了,你并不需要做这样大大大量的计算,可以直接从预训练的模型开始。

更好的是,开源的不止这一个模型。

究竟是有多强大

预警:先交代一下历史,后面是最新的成绩。

ResNeXt,其实诞生在2016年。

它的前辈是2015年发表的 ResNet (残差网络) ,用“ shortcut ”这种能跳过一些层的连接方式,解决了 梯度消失 问题,训练几百上千层的网络不是梦。

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

ResNet在图像分类、目标检测、定位、分割等等项目上完胜各路对手,拿下当年 CVPR最佳论文 ,震动了学界和工业界。

后来,作为ResNet的一个高能 进化版 ,ResNeXt在宽度和深度之外,引入了“ 基数 (Cardinality) ”的概念。在网络不加深不加宽的情况下,就能提升准确率,还能减少超参数的数量。

一个101层的ResNeXt,准确率已媲美200层的ResNet。于是,它也中选了CVPR。

而这一次, ResNeXt WSL 系列是在当年的基础上,又探索了 弱监督 (Weakly Supervised Learning) 的可能性:

Instagram图片,没有经过特别的标注,只带着用户自己加的话题标签 (#) ,就当做预训练的数据集了。

经过9.4亿张图的预训练,再拿ImageNet去微调,四个ResNeXt模型的考试成绩如下:

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

团队说,比起直接用ImageNet训练,加上弱监督的预训练步骤,分类准确率有明显的提升。

其中,32×48d的准确率 (Top-1) 刷新了ImageNet的纪录。

弱监督可行,今后AI就可以在更大规模的数据集上训练/预训练了。

一行代码可调用

现在,四个预训练模型都已经开源。加载只需:

1import torch
2model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x8d_wsl')
3# or
4# model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x16d_wsl')
5# or
6# model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x32d_wsl')
7# or
8#model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x48d_wsl')
9model.eval()

说不定你已经看出来了,所有模型都已加入不久前刚发布的 PyTorch Hub 豪华彩蛋。所以,一小段代码便可以轻松调用。

只有一点需要注意:这次开源的模型,要求所有输入图像,都用相同的方式 归一化 (Normalization) 。

具体示例,可以从文下传送门前往主页观摩。

One More Thing

在这样鸡冻人心的日子里,总有些小伙伴的关注点和其他人不一样:

他们用Instagram啊,我以后是不是要把所有的图都做个对抗样本,再发状态?(以达到欺骗AI的目的)

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

AI啊,你相信我,这真是一只长臂猿。(误)

ResNeXt主页:

https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/

GitHub项目:

https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py

Colab Demo:

https://colab.research.google.com/github/pytorch/pytorch.github.io/blob/master/assets/hub/facebookresearch_WSL-Images_resnext.ipynb

ECCV论文:

https://arxiv.org/abs/1805.00932

作者系网易新闻·网易号“各有态度”签约作者

— 完 —

AI社群 | 与优秀的人交流

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

小程序 | 全类别AI学习教程

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型

量子位  QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !


以上所述就是小编给大家介绍的《8亿参数,刷新ImageNet纪录:何恺明团队开源最强ResNeXt预训练模型》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Filter Bubble

The Filter Bubble

Eli Pariser / Penguin Press / 2011-5-12 / GBP 16.45

In December 2009, Google began customizing its search results for each user. Instead of giving you the most broadly popular result, Google now tries to predict what you are most likely to click on. Ac......一起来看看 《The Filter Bubble》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

在线进制转换器
在线进制转换器

各进制数互转换器

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换