numpy之-快速创建ndarray

栏目: Python · 发布时间: 5年前

内容简介:接上篇文章,本章主要说明ndarray的快速创建对象 创建ndarray对象除了使用np.array还有一下几种方式快速创建。....待续

接上篇文章,本章主要说明ndarray的快速创建对象 创建ndarray对象除了使用np.array还有一下几种方式快速创建。

1. 创建空的nadrray对象,因为没有赋值,所以会随机生成一些值。

np.empty((4,4))
array([[ 0.00000000e+000,  0.00000000e+000, -4.94065646e-323,
         0.00000000e+000],
       [ 2.12199579e-314,  0.00000000e+000,  0.00000000e+000,
         0.00000000e+000],
       [ 1.77229088e-310,  3.50977866e+064,  0.00000000e+000,
         0.00000000e+000],
       [             nan,              nan,  3.50977942e+064,
         0.00000000e+000]])
>>> np.empty((4,))
array([ 0.00000000e+000, -1.73059404e-077,  9.88131292e-324,
        2.78134232e-309])
复制代码
  • 指定类型: dtype='int'或者'uint'等
>>> np.empty((4,4),dtype='int')
array([[                   0,                    0, -9223372036854775798,
                           0],
       [          4294967296,                    0,                    0,
                           0],
       [      35871566856192,  5572452859464646656,                    0,
                           0],
       [                  -1,     -140187915007369,  5572452860762084442,
                           0]])
>>> np.empty((4,4),dtype='uint')
array([[                   0,                    0,   180366274849603603,
                  4402738160],
       [          4390252648, 17045276415608740984,           4402742864,
                  4390152352],
       [                   0,                    0,                    0,
                           0],
       [                   0,                    0,                    0,
                           0]], dtype=uint64)

复制代码

2. 生成全为0的ndarray对象(类似全为0的行列式):

>>> np.zeros((4,4),dtype='uint')
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=uint64)
>>> np.zeros((4,4),dtype='int')
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
复制代码

3. 全为1的ndarray对象,(类似全为0的行列式):

>>> np.ones((4,4),dtype='int')
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> np.ones((4,4),dtype='uint')
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=uint64)
复制代码

4. 生成对角线上有值的ndarray对象:

>>> np.eye(4)
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])
>>> np.eye(4,dtype='int')
array([[1, 0, 0, 0],
       [0, 1, 0, 0],
       [0, 0, 1, 0],
       [0, 0, 0, 1]])
复制代码

5. 通过已有数组列表创建ndarray对象,类似于np.array()

  • 使用np.asarray(),创建普通ndarray对象
>>> list = [1,2,3,4,5]
>>> dt = np.asarray(list)
>>> print(dt)
[1 2 3 4 5]
>>> dt = np.asarray(list,dtype='float')
>>> print(dt)
[1. 2. 3. 4. 5.]
复制代码

6. 通过已有数据通过流的范式读取,转化为ndarray对象

  • 使用np.frombuffer(),创建ndarray对象
>>> strings = b'this is a string'
>>> dt = np.frombuffer(strings,dtype='S1')
>>> print(dt)
[b't' b'h' b'i' b's' b' ' b'i' b's' b' ' b'a' b' ' b's' b't' b'r' b'i'
 b'n' b'g']
复制代码

7. 通过可迭代对象中读取,转化为ndarray对象

  • 使用np.forminter(),创建ndarray对象
>>> a = range(4)
>>> dt = np.fromiter(iter(a),dtype='float')
>>> print(dt)
[0. 1. 2. 3.]
复制代码

8. 从取值范围中生成ndarray对象

  • 使用arrange创建ndarray对象
参数的默认值如下:
np.arange(start,stop,step=1,dtype=None)
复制代码
>>> dt = np.arange(1,10)
>>> print(dt)
[1 2 3 4 5 6 7 8 9]
复制代码
  • 使用linspace创建等差数列ndarray对象
参数的默认值如下:
np.linspace(start,stop,num=50,endpoint=False,retstep,dtype=None)
复制代码
>>> dt = np.linspace(1,10)
>>> print(dt)
[ 1.          1.18367347  1.36734694  1.55102041  1.73469388  1.91836735
  2.10204082  2.28571429  2.46938776  2.65306122  2.83673469  3.02040816
  3.20408163  3.3877551   3.57142857  3.75510204  3.93877551  4.12244898
  4.30612245  4.48979592  4.67346939  4.85714286  5.04081633  5.2244898
  5.40816327  5.59183673  5.7755102   5.95918367  6.14285714  6.32653061
  6.51020408  6.69387755  6.87755102  7.06122449  7.24489796  7.42857143
  7.6122449   7.79591837  7.97959184  8.16326531  8.34693878  8.53061224
  8.71428571  8.89795918  9.08163265  9.26530612  9.44897959  9.63265306
  9.81632653 10.        ]
>>> dt = np.linspace(start=1,stop=10,num=10)
>>> print(dt)
[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]

复制代码
  • 使用logspace创建等比数列ndarray对象
参数的默认值如下:
np.logspace(start,stop,num=50,endpoint=False,retstep,dtype=None)
复制代码
>>> print(dt)
[1.00000000e+01 1.52641797e+01 2.32995181e+01 3.55648031e+01
 5.42867544e+01 8.28642773e+01 1.26485522e+02 1.93069773e+02
 2.94705170e+02 4.49843267e+02 6.86648845e+02 1.04811313e+03
 1.59985872e+03 2.44205309e+03 3.72759372e+03 5.68986603e+03
 8.68511374e+03 1.32571137e+04 2.02358965e+04 3.08884360e+04
 4.71486636e+04 7.19685673e+04 1.09854114e+05 1.67683294e+05
 2.55954792e+05 3.90693994e+05 5.96362332e+05 9.10298178e+05
 1.38949549e+06 2.12095089e+06 3.23745754e+06 4.94171336e+06
 7.54312006e+06 1.15139540e+07 1.75751062e+07 2.68269580e+07
 4.09491506e+07 6.25055193e+07 9.54095476e+07 1.45634848e+08
 2.22299648e+08 3.39322177e+08 5.17947468e+08 7.90604321e+08
 1.20679264e+09 1.84206997e+09 2.81176870e+09 4.29193426e+09
 6.55128557e+09 1.00000000e+10]
 >>> dt = np.logspace(1,10,num=10)
>>> print(dt)
[1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 1.e+06 1.e+07 1.e+08 1.e+09 1.e+10]

复制代码

....待续


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

HotSpot实战

HotSpot实战

陈涛 / 人民邮电出版社 / 2014-3 / 69

《HotSpot实战》深入浅出地讲解了HotSpot虚拟机的工作原理,将隐藏在它内部的本质内容逐一呈现在读者面前,包括OpenJDK与HotSpot项目、编译和调试HotSpot的方法、HotSpot内核结构、Launcher、OOP-Klass对象表示系统、链接、运行时数据区、方法区、常量池和常量池Cache、Perf Data、Crash分析方法、转储分析方法、垃圾收集器的设计演进、CMS和G......一起来看看 《HotSpot实战》 这本书的介绍吧!

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具