一道SQL题的多种解法

栏目: 数据库 · Mysql · 发布时间: 5年前

点击上方“蓝字”,轻松关注

一道 <a href='https://www.codercto.com/topics/18630.html'>SQL</a> 题的多种解法

作者:程恒超

来源:超哥的杂货铺

今天我们来看一道SQL题目:

店铺    销售日期    销售额
A    2017-10-11  300
A    2017-10-12  200
B    2017-10-11  400
B    2017-10-12  200
A    2017-10-13  100
A    2017-10-15  100
C    2017-10-11  350
C    2017-10-15  400
C    2017-10-16  200
D    2017-10-13  500
E    2017-10-14  600
E    2017-10-15  500
D    2017-10-14  600
B    2017-10-13  300
C    2017-10-17  100

需求:求出连续三天有销售记录的店铺

思路一:

自然的想法,寻找每个店铺是否连续三天都有销售额。利用现有的表,构造一个中间表,中间表既有当前日期的销售额,又有当前日期后两天的销售额,然后筛选销售额大于0的店铺名称即可。这种思路可以有(至少)两种实现方式。

一是通过自连接来实现,join两次。连接的条件是店铺名称相同并且天数相差1天。这种方式无论是在 MySQL 中还是Hive中都适用。我们以mysql为例说明,写法如下:

注:左右滑动查看全部代码

mysql> create table sales (
    name char(1),
    day char(10),
    amount int
);
mysql> insert into sales values('A', '2017-10-11', 300);
mysql> insert into sales values('A', '2017-10-12', 200);
mysql> insert into sales values('B', '2017-10-11', 400);
mysql> insert into sales values('B', '2017-10-12', 200);
mysql> insert into sales values('A', '2017-10-13', 100);
mysql> insert into sales values('A', '2017-10-15', 100);
mysql> insert into sales values('C', '2017-10-11', 350);
mysql> insert into sales values('C', '2017-10-15', 400);
mysql> insert into sales values('C', '2017-10-16', 200);
mysql> insert into sales values('D', '2017-10-13', 500);
mysql> insert into sales values('E', '2017-10-14', 600);
mysql> insert into sales values('E', '2017-10-15', 500);
mysql> insert into sales values('D', '2017-10-14', 600);
mysql> insert into sales values('B', '2017-10-13', 300);
mysql> insert into sales values('C', '2017-10-17', 100);

我们看一下我们想要构造的中间表,大概是长这个样子:

mysql> select *
    -> from sales a
    -> left join sales b
    -> on a.name = b.name and
    -> datediff(str_to_date(b.day, '%Y-%m-%d'), str_to_date(a.day, '%Y-%m-%d')) = 1
    -> left join sales c
    -> on b.name = c.name and
    -> datediff(str_to_date(c.day, '%Y-%m-%d'), str_to_date(b.day, '%Y-%m-%d')) = 1;
+------+------------+--------+------+------------+--------+------+------------+--------+
| name | day        | amount | name | day        | amount | name | day        | amount |
+------+------------+--------+------+------------+--------+------+------------+--------+
| A    | 2017-10-11 |    300 | A    | 2017-10-12 |    200 | A    | 2017-10-13 |    100 |
| B    | 2017-10-11 |    400 | B    | 2017-10-12 |    200 | B    | 2017-10-13 |    300 |
| C    | 2017-10-15 |    400 | C    | 2017-10-16 |    200 | C    | 2017-10-17 |    100 |
| A    | 2017-10-12 |    200 | A    | 2017-10-13 |    100 | NULL | NULL       |   NULL |
| E    | 2017-10-14 |    600 | E    | 2017-10-15 |    500 | NULL | NULL       |   NULL |
| D    | 2017-10-13 |    500 | D    | 2017-10-14 |    600 | NULL | NULL       |   NULL |
| B    | 2017-10-12 |    200 | B    | 2017-10-13 |    300 | NULL | NULL       |   NULL |
| C    | 2017-10-16 |    200 | C    | 2017-10-17 |    100 | NULL | NULL       |   NULL |
| A    | 2017-10-13 |    100 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
| A    | 2017-10-15 |    100 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
| C    | 2017-10-11 |    350 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
| E    | 2017-10-15 |    500 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
| D    | 2017-10-14 |    600 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
| B    | 2017-10-13 |    300 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
| C    | 2017-10-17 |    100 | NULL | NULL       |   NULL | NULL | NULL       |   NULL |
+------+------------+--------+------+------------+--------+------+------------+--------+
15 rows in set (0.00 sec)

可以看到需要借助 str_to_date datediff 函数处理日期的差值,每一条记录相邻两个日期在天数上依次加一,不满足这样条件的为NULL值。我们在此基础上增加 where 条件过滤 amount>0 ,并筛选出店铺名称即可,如下所示:

mysql> select a.name
    -> from sales a
    -> left join sales b
    -> on a.name = b.name and
    -> datediff(str_to_date(b.day, '%Y-%m-%d'), str_to_date(a.day, '%Y-%m-%d')) = 1
    -> left join sales c
    -> on b.name = c.name and
    -> datediff(str_to_date(c.day, '%Y-%m-%d'), str_to_date(b.day, '%Y-%m-%d')) = 1
    -> where a.amount > 0 and b.amount > 0 and c.amount > 0;
+------+
| name |
+------+
| A    |
| B    |
| C    |
+------+
3 rows in set (0.01 sec)

接下来我们思考,同样的思路放在Hive中能不能实现呢?有没有什么差别呢?通过join的方式当然没有问题。但能够联想到,Hive中提供了窗口函数,其中有一个 lead 函数可以获得当前记录的下一条记录,我们如果按照日期升序排列,借用 lead 函数是不是也可以得到同样结构的中间表了呢?我们看下代码:

hive> create external table sales(name string, day string, amount int)  row format delimited fields terminated by '\t';
OK
Time taken: 0.043 seconds
hive> load data local inpath 'sales.txt' into table sales;
Loading data to table learn.sales
Table learn.sales stats: [numFiles=1, totalSize=255]
OK
Time taken: 0.152 seconds
hive> select * from sales;
OK
A    2017-10-11  300
A    2017-10-12  200
B    2017-10-11  400
B    2017-10-12  200
A    2017-10-13  100
A    2017-10-15  100
C    2017-10-11  350
C    2017-10-15  400
C    2017-10-16  200
D    2017-10-13  500
E    2017-10-14  600
E    2017-10-15  500
D    2017-10-14  600
B    2017-10-13  300
C    2017-10-17  100
Time taken: 0.042 seconds, Fetched: 15 row(s)

使用 lead 函数 构造中间表的代码如下:

hive> select *
    > from
    > (
    >     select a.name, a.day day, a.amount,
    >     lead(a.name, 1, null) over (partition by a.name order by day) as name2,
    >     lead(a.day, 1, null) over (partition by a.name order by day) as day2,
    >     lead(a.amount, 1, null) over (partition by a.name order by day) as amount2,
    >     lead(a.name, 2, null) over (partition by a.name order by day) as name3,
    >     lead(a.day, 2, null) over (partition by a.name order by day) as day3,
    >     lead(a.amount, 2, null) over (partition by a.name order by day) as amount3
    >     from
    >     (
    >         select * from sales order by name, day
    >     ) a
    > ) b ;
OK
A    2017-10-11  300 A   2017-10-12  200 A   2017-10-13  100
A    2017-10-12  200 A   2017-10-13  100 A   2017-10-15  100
A    2017-10-13  100 A   2017-10-15  100 NULL    NULL    NULL
A    2017-10-15  100 NULL    NULL    NULL    NULL    NULL    NULL
B    2017-10-11  400 B   2017-10-12  200 B   2017-10-13  300
B    2017-10-12  200 B   2017-10-13  300 NULL    NULL    NULL
B    2017-10-13  300 NULL    NULL    NULL    NULL    NULL    NULL
C    2017-10-11  350 C   2017-10-15  400 C   2017-10-16  200
C    2017-10-15  400 C   2017-10-16  200 C   2017-10-17  100
C    2017-10-16  200 C   2017-10-17  100 NULL    NULL    NULL
C    2017-10-17  100 NULL    NULL    NULL    NULL    NULL    NULL
D    2017-10-13  500 D   2017-10-14  600 NULL    NULL    NULL
D    2017-10-14  600 NULL    NULL    NULL    NULL    NULL    NULL
E    2017-10-14  600 E   2017-10-15  500 NULL    NULL    NULL
E    2017-10-15  500 NULL    NULL    NULL    NULL    NULL    NULL
Time taken: 18.652 seconds, Fetched: 15 row(s)

这样的结果和刚刚类似,但按照店铺名称排了序。同样我们需要处理日期的差值,然后使用 where 条件过滤 amount>0 的记录,并筛选出店铺名称即可,这里使用了 datediff 函数和 to_date 函数。

hive> select b.name
    > from
    > (
    >     select a.name, a.day day, a.amount,
    >     lead(a.name, 1, null) over (partition by a.name order by day) as name2,
    >     lead(a.day, 1, null) over (partition by a.name order by day) as day2,
    >     lead(a.amount, 1, null) over (partition by a.name order by day) as amount2,
    >     lead(a.name, 2, null) over (partition by a.name order by day) as name3,
    >     lead(a.day, 2, null) over (partition by a.name order by day) as day3,
    >     lead(a.amount, 2, null) over (partition by a.name order by day) as amount3
    >     from
    >     (
    >         select * from sales order by name, day
    >     ) a
    > ) b
    > where b.amount > 0 and b.amount2 > 0 and b.amount3 > 0
    > and datediff(to_date(b.day3), to_date(b.day2)) = 1 and datediff(to_date(b.day2), to_date(b.day)) = 1;
OK
A
B
C
Time taken: 17.858 seconds, Fetched: 3 row(s)

思路二:

上面的思路虽然比较自然,但稍微多想一下,如果连续的日期不是3天,是7天,15天呢,是不是就要多写好多join,多写好多 lead 了呢,一方面join的效率是个问题,而且代码上会比较繁琐。所以有没有更好的思路呢?答案是肯定的,这种思路有点寻找规律的意思,要对每个店铺的销售记录按天进行组内排序,并求序号和销售“日”的和,和的值是有规律的,但不需要用到join。请看在hive中执行的代码(省略了MapReduce的日志):

hive> select *, substr(day, 9, 2), row_number() over (partition by name order by  day desc),
    > cast(substr(day, 9, 2) as int) + row_number() over (partition by name order by  day desc) as plus
    > from sales;
OK
A    2017-10-15  100 15  1   16
A    2017-10-13  100 13  2   15
A    2017-10-12  200 12  3   15
A    2017-10-11  300 11  4   15
B    2017-10-13  300 13  1   14
B    2017-10-12  200 12  2   14
B    2017-10-11  400 11  3   14
C    2017-10-17  100 17  1   18
C    2017-10-16  200 16  2   18
C    2017-10-15  400 15  3   18
C    2017-10-11  350 11  4   15
D    2017-10-14  600 14  1   15
D    2017-10-13  500 13  2   15
E    2017-10-15  500 15  1   16
E    2017-10-14  600 14  2   16

上面的结果中,倒数第三列是“年月日”的“日”,倒数第二列是对于每一个店铺内部,按照日期降序排列的序号,最后一列是二者的和。可以观察到,店铺有连续销售日期的记录,这个“和”列是一致的,且有连续几天,同样的和就会出现几次。销售日期如果不连续,则和的值也不一样。这样如果是连续3天,我们只需要筛选出这样的“和”出现3次的,同时选出店铺名称即可,7天就是7次,以此类推。代码如下(省略了MapReduce的日志):

hive> select b.name
    > from
    > (
    >     select a.name, plus, count(*)
    >     from
    >     (
    >         select *, substr(day, 9, 2), row_number() over (partition by name order by  day desc),
    >         cast(substr(day, 9, 2) as int) + row_number() over (partition by name order by  day desc) as plus
    >         from sales
    >     ) a
    >     group by
    >     a.name, plus
    >     having count(*) >=3
    > ) b;
OK
A
B
C

可以看到,也实现了我们想要的结果。

总结

我们用两种思路,三种方法,实现了“求连续三天有销售记录的店铺”,其中前两种方法容易理解,但第三种方法可能不太容易想到,但容易扩展,希望对大家有所启示。需要注意的是,我们只是使用了自己构造的数据,没有在专业的OJ上测,所以可能也并不是最优的解法。如果你有更好的解决思路,欢迎交流~

一道SQL题的多种解法

一道SQL题的多种解法

以清净心看世界;

用欢喜心过生活。

超哥的杂货铺,你值得拥有~

长按二维码关注我们


以上所述就是小编给大家介绍的《一道SQL题的多种解法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

程序员成长的烦恼

程序员成长的烦恼

吴亮、周金桥、李春雷、周礼 / 华中科技大学出版社 / 2011-4 / 28.00元

还在犹豫该不该转行学编程?还在编程的道路上摸爬滚打?在追寻梦想的道路上你并不孤单,《程序员成长的烦恼》中的四位“草根”程序员也曾有过类似的困惑。看看油田焊接技术员出身的周金桥是如何成功转行当上程序员的,做过钳工、当过外贸跟单员的李春雷是如何自学编程的,打小在486计算机上学习编程的吴亮是如何一路坚持下来的,工作中屡屡受挫、频繁跳槽的周礼是如何找到出路的。 《程序员成长的烦恼》记录了他们一步一......一起来看看 《程序员成长的烦恼》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

SHA 加密
SHA 加密

SHA 加密工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具