内容简介:根据 Facebook 的统计,Instgram 上的美食图片数量已经超过 3 亿张。然而,获取食物烹饪方法的途径依然有限,例如,通过烹饪网站或相关教程。怎样能够挖掘丰富食物图片背后的烹饪方法,让每个人都可以在家方便地学习新菜式呢?Facebook 研究团队最近在 CVPR 2019 发表论文,提出了一种新思路。用户可以输入食物图片,并获得对应的食材和制作方法。在用户实验上的结果说明,用这种方法烹饪食物的成功率,比传统检索方法成功率更高。看美食图片就能知道食谱?这个 AI 比美食家还灵么?
根据 Facebook 的统计,Instgram 上的美食图片数量已经超过 3 亿张。然而,获取食物烹饪方法的途径依然有限,例如,通过烹饪网站或相关教程。怎样能够挖掘丰富食物图片背后的烹饪方法,让每个人都可以在家方便地学习新菜式呢?
Facebook 研究团队最近在 CVPR 2019 发表论文,提出了一种新思路。用户可以输入食物图片,并获得对应的食材和制作方法。在用户实验上的结果说明,用这种方法烹饪食物的成功率,比传统检索方法成功率更高。
看美食图片就能知道食谱?这个 AI 比美食家还灵么?
喜欢研究吃的人经常会在看到美味食物甚至食物图片时垂涎不已,甚至千方百计想弄明白怎么才能做出这道美食。
最近,Facebook 提出了一种 AI 方法,能够根据美食图片直接生成食谱!天啊,简直满足了天下爱吃且爱做饭的人的心愿啊~
这张图片中左侧为原图;右侧显示了食物名称、原料,甚至还有操作说明。有了这个 AI,只需要有美食图,就可以准备做饭,不用再费力查找食谱啦~
目前,Facebook 已经把这个项目开源了:
GitHub 地址:https://github.com/facebookresearch/inversecooking
reddit 用户 JonathanFly 将该项目做成了一个 Colab demo,参见:
https://gist.github.com/JonathanFly/33946a08080041e90e8360b25e263a4e#file-facebook-cooking-demo-ipynb
还用非食物的图片进行了尝试,结果令人捧腹。
比如,如果你使用皮卡丘的图片,这个系统会告诉你「皮卡丘的食谱」:
「皮卡丘」竟然被认成了万圣节幽灵饼干!原来皮卡丘是烤制而成的~
从图像到食谱,如何实现?
从图片中生成食谱需要同时理解组成食材和制作的过程(如切片、和其他材料搅拌等)。传统方法将这个问题视为检索任务,基于输入图片和数据集图片的相似度计算,将食谱从一个固定的数据集中检索出来。很明显,传统方法在数据集缺少某种食物制作方法的情况下就会失败。
有一种方法可以克服这一数据局限,即将图片到菜谱的问题视为一个条件生成任务。研究人员认为,与其直接从图片中获取菜谱,不如首先预测食物的材料,然后基于图像和食材生成食物制作方法。这样可以利用图片和食材的中间过程获取一些额外信息。
模型
模型主要由两部分构成,首先研究人员预训练一个图片编码器和一个食材解码器(ingredients decoder),提取输入图像的视觉特征来预测食材。然后训练一个食材编码器(ingredient encoder)和烹饪流程解码器(instruction decoder),根据输入图片的图像特征和已经预测到的食材,生成食物的名称和烹饪流程。
模型架构如下图所示:
图 2:模型的结构。模型的输入是食物图片,输出的是烹饪方法序列,而中间一步是基于图像生成食材清单。
具体来讲,烹饪流程解码器使用了三种不同的注意力策略:
图 3:烹饪流程解码器使用的注意力策略。Transformer 模型(a)中的注意力模块被替换成了三种不同的注意力模块(b-d),用于多种条件下的烹饪说明。
效果如何?
研究人员使用 Recipe1M [45] 数据集来训练和评估模型。该数据集包括从烹饪网站上爬取的 1,029,720 个食谱。在实验中,研究者仅使用了包含图片的食谱,并移除了使用少于两种食材或两道流程的食物。最终,实验使用了 252,547 个训练样本、54,255 个验证样本和 54,506 个测试样本。
研究人员对比了传统的检索方法和该研究提出的新方法,结果如下:
表 3:基线方法和论文方法的对比。左图为 IoU 和 F1 分数,右图为食材在烹饪指南上的精确率和召回率。
研究人员还进行了用户测试。他们从测试集中随机选择了 15 张图片,让用户根据提供的图片选择 20 种食材,并写下可能图片对应的菜谱。为了减少人类任务的复杂度,研究人员提高食材使用频率的阈值,减少了食材的选择数量。
表 4:用户测试。左图为基线方法、人类和论文方法判断食材的 IoU 和 F1 分数,右图为根据人类判断,这三种方法生成食谱的成功率。
实验结果说明,使用 AI 生成的食谱比检索方法生成的食谱效果更好。
这样的研究只是造福吃货吗?
这项研究通过对食物图片的研究,可以进一步猜测其食材和加工方式。这可以进一步方便人们学习新的食物制作、协助计算食物中每种成分的卡路里、创造新的菜谱。同时,该研究采用的方法可以进一步启发「根据图片预测长文本」的研究。
更何况,再也不用看着社交媒体上的美食流口水了。扫图出菜谱,人人都可以学着做~
参考链接: https://ai.facebook.com/blog/inverse-cooking/
https://www.reddit.com/r/MachineLearning/comments/c1tb5m/p_using_ai_to_generate_recipes_from_food_images/
以上所述就是小编给大家介绍的《食物图片变菜谱:这篇CVPR论文让人人都可以学习新料理》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
ppk on JavaScript, 1/e
Peter-Paul Koch / New Riders Press / 2006-09-20 / USD 44.99
Whether you're an old-school scripter who needs to modernize your JavaScripting skills or a standards-aware Web developer who needs best practices and code examples, you'll welcome this guide from a J......一起来看看 《ppk on JavaScript, 1/e》 这本书的介绍吧!