深入koa源码(二):核心库原理

栏目: Node.js · 发布时间: 5年前

内容简介:最近读了 koa2 的源码,理清楚了架构设计与用到的第三方库。本系列将分为 3 篇,分别介绍本文来自所有系列文章都放在了

最近读了 koa2 的源码,理清楚了架构设计与用到的第三方库。本系列将分为 3 篇,分别介绍 koa 的架构设计 和 3 个核心库,最终会 手动实现一个简易的 koa这是系列第 2 篇,关于 3 个核心库的原理

本文来自 《心谭博客·深入koa源码:核心库原理》

所有系列文章都放在了 Github 。欢迎交流和Star ✿✿ ヽ(°▽°)ノ ✿

is-generator-function:判断 generator

koa2 种推荐使用 async 函数,koa1 推荐的是 generator。koa2 为了兼容,在调用 use 添加中间件的时候,会判断是否是 generator。如果是,则用 covert 库转化为 async 函数。

判断是不是 generator 的逻辑写在了 is-generator-function 库中,逻辑非常简单,通过判断 Object.prototype.toString.call 的返回结果即可:

function* say() {}
Object.prototype.toString.call(say); // 输出: [object GeneratorFunction]

delegates:属性代理

delegates 和 koa 一样,这个库都是出自大佬 TJ 之手。它的作用就是属性代理。这个代理库常用的方法有 gettersettermethodaccess

用法

假设准备了一个对象 target ,为了方便访问其上 request 属性的内容,对 request 进行代理:

const delegates = require("delegates");
const target = {
  request: {
    name: "xintan",
    say: function() {
      console.log("Hello");
    }
  }
};

delegates(target, "request")
  .getter("name")
  .setter("name")
  .method("say");

代理后,访问 request 将会更加方便:

console.log(target.name); // xintan
target.name = "xintan!!!";
console.log(target.name); // xintan!!!
target.say(); // Hello

实现

对于 settergetter 方法,是通过调用对象上的 __defineSetter____defineGetter__ 来实现的。下面是单独拿出来的逻辑:

/**
 * @param {Object} proto 被代理对象
 * @param {String} property 被代理对象上的被代理属性
 * @param {String} name
 */
function myDelegates(proto, property, name) {
  proto.__defineGetter__(name, function() {
    return proto[property][name];
  });
  proto.__defineSetter__(name, function(val) {
    return (proto[property][name] = val);
  });
}

myDelegates(target, "request", "name");
console.log(target.name); // xintan
target.name = "xintan!!!";
console.log(target.name); // xintan!!!

刚开始我的想法是更简单一些,就是直接让 proto[name] = proto[property][name] 。但这样做有个缺点无法弥补,就是之后如果 proto[property][name] 改变, proto[name] 获取不了最新的值。

对于 method 方法,实现上是在对象上创建了新属性,属性值是一个函数。这个函数调用的就是代理目标的函数。下面是单独拿出来的逻辑:

/**
 *
 * @param {Object} proto 被代理对象
 * @param {String} property 被代理对象上的被代理属性
 * @param {String} method 函数名
 */
function myDelegates(proto, property, method) {
  proto[method] = function() {
    return proto[property][method].apply(proto[property], arguments);
  };
}

myDelegates(target, "request", "say");
target.say(); // Hello

因为是“代理”,所以这里不能修改上下文环境。 proto[property][method] 的上下文环境是 proto[property] ,需要 apply 重新指定。

koa 中也有对属性的 access 方法代理,这个方法就是 gettersetter 写在一起的语法糖。

koa-compose:洋葱模型

模拟洋葱模型

koa 最让人惊艳的就是大名鼎鼎的“洋葱模型”。以至于之前我在开发 koa 中间件的时候,一直有种 magic 的方法。经常疑惑,这里 await next() ,执行完之后的中间件又会重新回来继续执行未执行的逻辑。

这一段逻辑封装在了核心库 koa-compose 里面。源码也很简单,算上各种注释只有不到 50 行。为了方便说明和理解,我把其中一些意外情况检查的代码去掉:

function compose(middleware) {
  return function(context) {
    return dispatch(0);

    function dispatch(i) {
      let fn = middleware[i];
      try {
        return Promise.resolve(fn(context, dispatch.bind(null, i + 1)));
      } catch (err) {
        return Promise.reject(err);
      }
    }
  };
}

middleware 里面保存的就是开发者自定义的中间件处理逻辑。为了方便说明,我准备了 2 个中间件函数:

const middleware = [
  async (ctx, next) => {
    console.log("a");
    await next();
    console.log("c");
  },

  async (ctx, next) => {
    console.log("b");
  }
];

现在,模拟在 koa 中对 compose 函数的调用,我们希望程序的输出是: a b c (正如使用 koa 那样)。运行以下代码即可:

const fns = compose(middleware);
fns();

ok,目前已经模拟出来了一个不考虑异常情况的洋葱模型了。

为什么会这样?

为什么会有洋葱穿透的的效果呢?回到上述的 compose 函数,闭包写法返回了一个新的函数,其实就是返回内部定义的 dispatch 函数。其中,参数的含义分别是:

  • i: 当前执行到的中间件在所有中间件中的下标
  • context: 上下文环境。所以我们在每个中间件中都可以访问到当前请求的信息。

在上面的测试用例中, fns 其实就是 dispatch(0) 。在 dispatch 函数中,通过参数 i 拿到了当前要运行的中间件 fn

然后,将当前请求的上下文环境(context)和 dispatch 处理的下一个中间件(next),都传递给当前中间件。对应的代码段是:

return Promise.resolve(fn(context, dispatch.bind(null, i + 1)));

那么,在中间件中执行 await next() ,其实就是执行: await dispatch.bind(null, i + 1) 。因此看起来,当前中间件会停止自己的逻辑,先处理下一个中间件的逻辑。

因为每个 dispatch ,都返回新的 Promsise。所以 async 会等到 Promise 状态改变后再回来继续执行自己的逻辑。

async/await 改写

最后,在不考虑 koa 的上下文环境的情况下,用 async/await 的提炼出了 compose 函数:

function compose(middleware) {
  return dispatch(0);

  async function dispatch(i) {
    let fn = middleware[i];
    try {
      await fn(dispatch.bind(null, i + 1));
    } catch (err) {
      return err;
    }
  }
}

下面是它的使用方法:

const middleware = [
  async next => {
    console.log("a");
    await next();
    console.log("c");
  },

  async next => {
    console.log("b");
  }
];

compose(middleware); // 输出a b c

希望最后这段代码能帮助理解!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

可爱的Python

可爱的Python

哲思社区 / 电子工业出版社 / 2009-9 / 55.00元

本书的内容主要来自CPyUG社区的邮件列表,由Python的行者根据自身经验组织而成,是为从来没有听说过Python的其他语言程序员准备的一份实用的导学性质的书。笔者试图将优化后的学习体验,通过故事的方式传达给读者,同时也分享了蟒样(Pythonic式)的知识获取技巧,而且希望将最常用的代码和思路,通过作弊条(Cheat Sheet,提示表单)的形式分享给有初步基础的Python 用户,来帮助大家......一起来看看 《可爱的Python》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具