MongoDB指南---18、聚合命令

栏目: 数据库 · 发布时间: 5年前

内容简介:上一篇文章:下一篇文章:MongoDB为在集合上执行基本的聚合任务提供了一些命令。这些命令在聚合框架出现之前就已经存在了,现在(大多数情况下)已经被聚合框架取代。然而,复杂的group操作可能仍然需要使用JavaScript,count和distinct操作可以被简化为普通命令,不需要使用聚合框架。

上一篇文章: MongoDB指南---17、MapReduce

下一篇文章:

MongoDB为在集合上执行基本的聚合任务提供了一些命令。这些命令在聚合框架出现之前就已经存在了,现在(大多数情况下)已经被聚合框架取代。然而,复杂的group操作可能仍然需要使用JavaScript,count和distinct操作可以被简化为普通命令,不需要使用聚合框架。

count

count是最简单的聚合工具,用于返回集合中的文档数量:

> db.foo.count()
0
> db.foo.insert({"x" : 1})
> db.foo.count()
1

不论集合有多大,count都会很快返回总的文档数量。

也可以给count传递一个查询文档,Mongo会计算查询结果的数量:

> db.foo.insert({"x" : 2})
> db.foo.count()
2
> db.foo.count({"x" : 1})
1

对分页显示来说总数非常必要:“共439个,目前显示0~10个”。但是,增加查询条件会使count变慢。count可以使用索引,但是索引并没有足够的元数据供count使用,所以不如直接使用查询来得快。

distinct

distinct用来找出给定键的所有不同值。使用时必须指定集合和键。

> db.runCommand({"distinct" : "people", "key" : "age"})

假设集合中有如下文档:

{"name" : "Ada", "age" : 20}
{"name" : "Fred", "age" : 35}
{"name" : "Susan", "age" : 60}
{"name" : "Andy", "age" : 35}

如果对"age"键使用distinct,会得到所有不同的年龄:

> db.runCommand({"distinct" : "people", "key" : "age"})
{"values" : [20, 35, 60], "ok" : 1}

这里还有一个常见问题:有没有办法获得集合里面所有不同的键呢?MongoDB并没有直接提供这样的功能,但是可以用MapReduce(详见7.3节)自己写一个。

group

使用group可以执行更复杂的聚合。先选定分组所依据的键,而后 MongoDB 就会将集合依据选定键的不同值分成若干组。然后可以对每一个分组内的文档进行聚合,得到一个结果文档。

如果你熟悉SQL,那么这个group和 SQL 中的GROUP BY差不多。

假设现在有个跟踪股票价格的站点。从上午10点到下午4点每隔几分钟就会更新某只股票的价格,并保存在MongoDB中。现在报表程序要获得近30天的收盘价。用group就可以轻松办到。

股价集合中包含数以千计如下形式的文档:

{"day" : "2010/10/03", "time" : "10/3/2010 03:57:01 GMT-400", "price" : 4.23}
{"day" : "2010/10/04", "time" : "10/4/2010 11:28:39 GMT-400", "price" : 4.27}
{"day" : "2010/10/03", "time" : "10/3/2010 05:00:23 GMT-400", "price" : 4.10}
{"day" : "2010/10/06", "time" : "10/6/2010 05:27:58 GMT-400", "price" : 4.30}
{"day" : "2010/10/04", "time" : "10/4/2010 08:34:50 GMT-400", "price" : 4.01}

注意,由于精度的问题,实际使用中不要将金额以浮点数的方式存储,这个例子只是为了简便才这么做。

我们需要的结果列表中应该包含每天的最后交易时间和价格,就像下面这样:

[
    {"time" : "10/3/2010 05:00:23 GMT-400", "price" : 4.10},
    {"time" : "10/4/2010 11:28:39 GMT-400", "price" : 4.27},
    {"time" : "10/6/2010 05:27:58 GMT-400", "price" : 4.30}
]

先把集合按照"day"字段进行分组,然后在每个分组中查找"time"值最大的文档,将其添加到结果集中就完成了。整个过程如下所示:

> db.runCommand({"group" : {
... "ns" : "stocks",
... "key" : "day",
... "initial" : {"time" : 0},
... "$reduce" : function(doc, prev) {
...     if (doc.time > prev.time) {
...         prev.price = doc.price;
...         prev.time = doc.time;
...     }
... }}})

把这个命令分解开看看。

  • "ns" : "stocks"

指定要进行分组的集合。

  • "key" : "day"

指定文档分组依据的键。这里就是"day"键。所有"day"值相同的文档被分到一组。

  • "initial" : {"time" : 0}

每一组reduce函数调用中的初始"time"值,会作为初始文档传递给后续过程。每一组的所有成员都会使用这个累加器,所以它的任何变化都可以保存下来。

  • "$reduce" : function(doc, prev) { ... }

这个函数会在集合内的每个文档上执行。系统会传递两个参数:当前文档和累加器文档(本组当前的结果)。本例中,想让reduce函数比较当前文档的时间和累加器的时间。如果当前文档的时间更晚一些,则将累加器的日期和价格替换为当前文档的值。别忘了,每一组都有一个独立的累加器,所以不必担心不同日期的命令会使用同一个累加器。

在问题一开始的描述中,就提到只要最近30天的股价。然而,我们在这里迭代了整个集合。这就是要添加"condition"的原因,因为这样就可以只对必要的文档进行处理。

> db.runCommand({"group" : {
... "ns" : "stocks",
... "key" : "day",
... "initial" : {"time" : 0},
... "$reduce" : function(doc, prev) {
...     if (doc.time > prev.time) {
...            prev.price = doc.price;
...         prev.time = doc.time;
...     }},
... "condition" : {"day" : {"$gt" : "2010/09/30"}}
... }})

有些参考资料提及"cond"键或者"q"键,其实和"condition"键是完全一样的(就是表达力不如"condition"好)。

最后就会返回一个包含30个文档的数组,其实每个文档都是一个分组。每组都包含分组依据的键(这里就是"day" : string)以及这组最终的prev值。如果有的文档不存在指定用于分组的键,这些文档会被单独分为一组,缺失的键会使用"day : null"这样的形式。在"condition"中加入"day" : {"$exists" : true}就可以排除不包含指定用于分组的键的文档。group命令同时返回了用到的文档总数和"key"的不同值数量:

> db.runCommand({"group" : {...}})
{
    "retval" :
        [
            {
                "day" : "2010/10/04",
                "time" : "Mon Oct 04 2010 11:28:39 GMT-0400 (EST)"
                "price" : 4.27
            },
            ...
        ],
    "count" : 734,
    "keys" : 30,
    "ok" : 1
}

这里每组的"price"都是显式设置的,"time"先由初始化器设置,然后在迭代中进行更新。"day"是默认被加进去的,因为用于分组的键会默认加入到每个"retval"内嵌文档中。要是不想在结果集中看到这个键,可以用完成器将累加器文档变为任何想要的形态,甚至变换成非文档(例如数字或字符串)。

1. 使用完成器

完成器(finalizer)用于精简从数据库传到用户的数据,这个步骤非常重要,因为group命令的输出结果需要能够通过单次数据库响应返回给用户。为进一步说明,这里举个博客的例子,其中每篇文章都有多个标签(tag)。现在要找出每天最热门的标签。可以(再一次)按天分组,得到每一个标签的计数。就像下面这样:

> db.posts.group({
... "key" : {"day" : true},
... "initial" : {"tags" : {}},
... "$reduce" : function(doc, prev) {
...     for (i in doc.tags) {
...         if (doc.tags[i] in prev.tags) {
...             prev.tags[doc.tags[i]]++;
...         } else {
...             prev.tags[doc.tags[i]] = 1;
...         }
...     }
... }})

得到的结果如下所示:

[
    {"day" : "2010/01/12", "tags" : {"nosql" : 4, "winter" : 10, "sledding" : 2}},
    {"day" : "2010/01/13", "tags" : {"soda" : 5, "php" : 2}},
    {"day" : "2010/01/14", "tags" : {"python" : 6, "winter" : 4, "nosql": 15}}
]

接着可以在客户端找出"tags"文档中出现次数最多的标签。然而,向客户端发送每天所有的标签文档需要许多额外的开销——每天所有的键/值对都被传送给用户,而我们需要的仅仅是一个字符串。这也就是group有一个可选的"finalize"键的原因。"finalize"可以包含一个函数,在每组结果传递到客户端之前调用一次。可以使用"finalize"函数将不需要的内容从结果集中移除:

> db.runCommand({"group" : {
... "ns" : "posts",
... "key" : {"day" : true},
... "initial" : {"tags" : {}},
... "$reduce" : function(doc, prev) {
...     for (i in doc.tags) {
...         if (doc.tags[i] in prev.tags) {
...             prev.tags[doc.tags[i]]++;
...         } else {
...             prev.tags[doc.tags[i]] = 1;
...         }
...     },
... "finalize" : function(prev) {
...     var mostPopular = 0;
...     for (i in prev.tags) {
...         if (prev.tags[i] > mostPopular) {
...             prev.tag = i;
...             mostPopular = prev.tags[i];
...         }
...     }
...     delete prev.tags
... }}})

现在,我们就得到了想要的信息,服务器返回的内容可能如下:

[
    {"day" : "2010/01/12", "tag" : "winter"},
    {"day" : "2010/01/13", "tag" : "soda"},
    {"day" : "2010/01/14", "tag" : "nosql"}
]

finalize可以对传递进来的参数进行修改,也可以返回一个新值。

2. 将函数作为键使用

有时分组所依据的条件可能会非常复杂,而不是单个键。比如要使用group计算每个类别有多少篇博客文章(每篇文章只属于一个类别)。由于不同作者的风格不同,填写分类名称时可能有人使用大写也有人使用小写。所以,如果要是按类别名来分组,最后“MongoDB”和“mongodb”就是两个完全不同的组。为了消除这种大小写的影响,就要定义一个函数来决定文档分组所依据的键。

定义分组函数就要用到$keyf键(注意不是"key"),使用"$keyf"的group命令如下所示:

> db.posts.group({"ns" : "posts",
... "$keyf" : function(x) { return x.category.toLowerCase(); },
... "initializer" : ... })

有了"$keyf",就能依据各种复杂的条件进行分组了。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

How to Think Like a Computer Scientist: Learning with Python

How to Think Like a Computer Scientist: Learning with Python

Allen B. Downey、Jeffrey Elkner、Chris Meyers / Green Tea Press / 2002-1-4 / USD 24.95

""How to Think Like a Computer Scientist"" is an introduction to programming using Python, one of the best languages for beginners. This is a Free Book -- you can download it from thinkpython.com. But......一起来看看 《How to Think Like a Computer Scientist: Learning with Python》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

随机密码生成器
随机密码生成器

多种字符组合密码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具