内容简介:Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互独立的。每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定的),每个partition存储一部分Message。借用官方的一张图,可以直观地看到topic和partition的关系。partition是以文件的形式存储在文件系统中,比如,创建了一个名为page_visits的topic,其有5个partition,那么在Kafka的数据目录中(由配置文件中的
引言
Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互独立的。每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定的),每个partition存储一部分Message。借用官方的一张图,可以直观地看到topic和partition的关系。
partition是以文件的形式存储在文件系统中,比如,创建了一个名为page_visits的topic,其有5个partition,那么在Kafka的数据目录中(由配置文件中的log.dirs指定的)中就有这样5个目录: page_visits-0, page_visits-1,page_visits-2,page_visits-3,page_visits-4,其命名规则为
接下来,本文将分析partition目录中的文件的存储格式和相关的代码所在的位置。
Partition的数据文件
Partition中的每条Message由offset来表示它在这个partition中的偏移量,这个offset不是该Message在partition数据文件中的实际存储位置,而是逻辑上一个值,它唯一确定了partition中的一条Message。因此,可以认为offset是partition中Message的id。partition中的每条Message包含了以下三个属性:
- offset
- MessageSize
- data
其中offset为long型,MessageSize为int32,表示data有多大,data为message的具体内容。它的格式和Kafka通讯协议中介绍的MessageSet格式是一致。
Partition的数据文件则包含了若干条上述格式的Message,按offset由小到大排列在一起。它的实现类为FileMessageSet,类图如下:
它的主要方法如下:
- append: 把给定的ByteBufferMessageSet中的Message写入到这个数据文件中。
- searchFor: 从指定的startingPosition开始搜索找到第一个Message其offset是大于或者等于指定的offset,并返回其在文件中的位置Position。它的实现方式是从startingPosition开始读取12个字节,分别是当前MessageSet的offset和size。如果当前offset小于指定的offset,那么将position向后移动LogOverHead+MessageSize(其中LogOverHead为offset+messagesize,为12个字节)。
- read:准确名字应该是slice,它截取其中一部分返回一个新的FileMessageSet。它不保证截取的位置数据的完整性。
- sizeInBytes: 表示这个FileMessageSet占有了多少字节的空间。
- truncateTo: 把这个文件截断,这个方法不保证截断位置的Message的完整性。
- readInto: 从指定的相对位置开始把文件的内容读取到对应的ByteBuffer中。
我们来思考一下,如果一个partition只有一个数据文件会怎么样?
- 新数据是添加在文件末尾(调用FileMessageSet的append方法),不论文件数据文件有多大,这个操作永远都是O(1)的。
- 查找某个offset的Message(调用FileMessageSet的searchFor方法)是顺序查找的。因此,如果数据文件很大的话,查找的效率就低。
那Kafka是如何解决查找效率的的问题呢?有两大法宝:1) 分段 2) 索引。
数据文件的分段
Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中最小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。
为数据文件建索引
数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。
索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分(均为4个字节的数字),分别为相对offset和position。
- 相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。
- position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。
index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。
在Kafka中,索引文件的实现类为OffsetIndex,它的类图如下:
主要的方法有:
- append方法,添加一对offset和position到index文件中,这里的offset将会被转成相对的offset。
- lookup, 用二分查找的方式去查找小于或等于给定offset的最大的那个offset
小结
我们以几张图来总结一下Message是如何在Kafka中存储的,以及如何查找指定offset的Message的。
Message是按照topic来组织,每个topic可以分成多个的partition,比如:有5个partition的名为为page_visits的topic的目录结构为:
partition是分段的,每个段叫LogSegment,包括了一个数据文件和一个索引文件,下图是某个partition目录下的文件:
可以看到,这个partition有4个LogSegment。
查找Message原理图:
比如:要查找绝对offset为7的Message:
- 首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。
- 打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。
- 打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。
这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。
一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性。
Kafka使用jmxtrans+influxdb+grafana监控JMX指标 https://www.linuxidc.com/Linux/2019-04/158037.htm
Kafka单机环境搭建简记 https://www.linuxidc.com/Linux/2019-03/157651.htm
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-06/159110.htm
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Mobilizing Web Sites
Layon, Kristofer / 2011-12 / 266.00元
Everyone has been talking about the mobile web in recent years, and more of us are browsing the web on smartphones and similar devices than ever before. But most of what we are viewing has not yet bee......一起来看看 《Mobilizing Web Sites》 这本书的介绍吧!