微服务架构如何保障99.99%高可用

栏目: 后端 · 发布时间: 5年前

内容简介:微服务架构本身最最核心的保障高可用的措施,就是两点:一个是基于Hystrix做资源隔离以及熔断;另一个是做备用降级方案。
编辑推荐:
本文来自于csdn,本文介绍了微服务架构最核心的,保障高可用的两点措施,希望对您的学习能有所帮助。

微服务架构本身最最核心的保障高可用的措施,就是两点:

一个是基于Hystrix做资源隔离以及熔断;

另一个是做备用降级方案。

如果资源隔离和降级都做的很完善,那么在双11这种高并发场景下,也许可能会出现个别的服务故障,但是绝不会蔓延到整个系统全部宕机。

业务场景介绍

大家首先回顾一下下面这张图,这是一个公司的系统。

微服务架构如何保障99.99%高可用

如上图,核心服务A调用了核心服务B和C,在核心服务B响应过慢时,会导致核心服务A的某个线程池全部卡死。

但是此时因为你用了hystrix做了资源隔离,所以核心服务A是可以正常调用服务C的,那么就可以保证用户起码是可以使用APP的部分功能的,只不过跟服务B关联的页面刷不出来,功能无法使用罢了。

当然这种情况在生产系统中,是绝对不被允许的,所以大家不要让上述情况发生。

我们最终把系统优化成了下图这样:

要保证一个hystrix线程池可以轻松处理每秒钟的请求

同时还有合理的超时时间设置,避免请求太慢卡死线程。

微服务架构如何保障99.99%高可用

线上经验—设置Hystrix线程池大小

下面是我们在线上经过了大量系统优化后的生产经验总结:

假设你的服务A,每秒钟会接收30个请求,同时会向服务B发起30个请求,然后每个请求的响应时长经验值大概在200ms,那么你的hystrix线程池需要多少个线程呢?

计算公式是:30(每秒请求数量) * 0.2(每个请求的处理秒数) + 4(给点缓冲buffer) = 10(线程数量)。

如果对上述公式存在疑问,不妨反过来推算一下,为什么10个线程可以轻松抗住每秒30个请求?

一个线程200毫秒可以执行完一个请求,那么一个线程1秒可以执行5个请求,理论上,只要6个线程,每秒就可以执行30个请求。

也就是说,线程里的10个线程中,就6个线程足以抗住每秒30个请求了。剩下4个线程都在玩儿,空闲着。

那为啥要多搞4个线程呢?很简单,因为你要留一点buffer空间。

万一在系统高峰期,系统性能略有下降,此时不少请求都耗费了300多毫秒才执行完,那么一个线程每秒只能处理3个请求了,10个线程刚刚好勉强可以hold住每秒30个请求。所以你必须多考虑留几个线程。

老规矩,给大家来一张图,直观的感受一下整个过程。

微服务架构如何保障99.99%高可用

线上经验—如何设置请求超时时间

线程数量OK了,那么请求的超时时间设置为多少?答案是300毫秒。

为啥呢?很简单啊,如果你的超时时间设置成了500毫秒,想想可能会有什么后果?

考虑极端情况,如果服务B响应变慢,要500毫秒才响应,你一个线程每秒最多只能处理2个请求了,10个线程只能处理20个请求。

而每秒是30个请求过来,结局会如何?

咱们回看一下第一张图就知道了,大量的线程会全部卡死,来不及处理那么多请求,最后用户会刷不出来页面。

还是有点不理解?再给你一张图,让你感受一下这个不合理的超时时间导致的问题!

微服务架构如何保障99.99%高可用

如果你的线程池大小和超时时间没有配合着设置好,很可能会导致服务B短暂的性能波动,瞬间导致服务A的线程池卡死,里面的线程要卡顿一段时间才能继续执行下一个请求。

哪怕一段时间后,服务B的接口性能恢复到200毫秒以内了,服务A的线程池里卡死的状况也要好一会儿才能恢复过来。

你的超时时间设置的越不合理,比如设置的越长,设置到了1秒、2秒,那么这种卡死的情况就需要越长的时间来恢复。

所以说,此时你的超时时间得设置成300毫秒,保证一个请求300毫秒内执行不完,立马超时返回。

这样线程池里的线程不会长时间卡死,可以有条不紊的处理多出来的请求,大不了就是300毫秒内处理不完立即超时返回,但是线程始终保持可以运行的状态。

这样当服务B的接口性能恢复到200毫秒以内后,服务A的线程池里的线程很快就可以恢复。

这就是生产系统上的hystrix参数设置优化经验,你需要考虑到各种参数应该如何设置。

否则的话,很可能会出现上文那样的情况,用了高大上的Spring Cloud架构,结果跟黑盒子一样,莫名其妙系统故障,各种卡死,宕机什么的。

好了,我们继续。如果现在这套系统每秒有6000请求,然后核心服务A一共部署了60台机器,每台机器就是每秒会收到100个请求,那么此时你的线程池需要多少个线程?

很简单,10个线程抗30个请求,30个线程抗100请求,差不多了吧。

这个时候,你应该知道服务A的线程池调用服务B的线程池分配多少线程了吧?超时时间如何设置应该也知道了!

其实这个东西不是固定死的,但是你要知道他的计算方法。

根据服务的响应时间、系统高峰QPS、有多少台机器,来计算出来,线程池的大小以及超时时间!

服务降级

设置完这些后,就应该要考虑服务降级的事了。

如果你的某个服务挂了,那么你的hystrix会走熔断器,然后就会降级,你需要考虑到各个服务的降级逻辑。

举一些常见的例子:

如果查询数据的服务挂了,你可以查本地的缓存

如果写入数据的服务挂了,你可以先把这个写入操作记录日志到比如 mysql 里,或者写入MQ里,后面再慢慢恢复

如果 redis 挂了,你可以查mysql

如果mysql挂了,你可以把操作日志记录到es里去,后面再慢慢恢复数据。

具体用什么降级策略,要根据业务来定,不是一成不变的。

总结

最后总结一下,排除那些基础设施的故障,你要玩儿微服务架构的话,需要保证两点:

首先你的hystrix资源隔离以及超时这块,必须设置合理的参数,避免高峰期,频繁的hystrix线程卡死

其次,针对个别的服务故障,要设置合理的降级策略,保证各个服务挂了,可以合理的降级,系统整体可用!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

基于内容图像检索技术

基于内容图像检索技术

周明全 / 清华大学 / 2007-12 / 28.00元

《基于内容图像检索技术》从理论方法研究与实现技术角度,总结归纳了基于内容图像检索(CBIR)技术的研究与进展,并融入了作者多年来的相关研究与应用成果,系统地介绍了CBIR的主要概念、基本原理、典型方法、实用范例以及新动向。《基于内容图像检索技术》共有12章分为五部分:第一部分是概述,分析了CBIR的体系结构、技术现状和发展趋势;第一部分讨论图像特征提取,给出图像低层特征(颜色、形状、纹理、空间关系......一起来看看 《基于内容图像检索技术》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具