英伟达的STEAL AI让神经网络拥有更好的计算机视觉

栏目: 数据库 · 发布时间: 6年前

英伟达的STEAL AI让神经网络拥有更好的计算机视觉

来自英伟达(Nvidia)、多伦多大学(University of Toronto)和多伦多矢量人工智能研究所(Vector Institute for Artificial Intelligence)的研究人员设计了一种方法,可以更精确地探测和预测物体的起点和终点。这些知识可以改进现有计算机视觉模型的推理,并为未来的模型标记训练数据。

在研究人员的实验中,语义细化的边缘对齐学习(steal)能够将最先进的casenet语义边界预测模型的精度提高4%。更精确地识别物体的边界可以应用于计算机视觉任务,从图像生成到三维重建到物体检测。

STEAL可用于改进现有的CNNs或边界检测模型,但研究人员还认为它可以帮助他们更有效地标记或注释计算机视觉模型的数据。为证明这一点,STEAL方法用于改进城市景观,这是2016年首次在计算机视觉和模式识别(CVPR)会议上引入的城市环境数据集。

英伟达的STEAL AI让神经网络拥有更好的计算机视觉

在GitHub上,STEAL框架以像素为单位学习和预测对象边缘,研究人员称之为“主动对齐”。“在训练过程中对注释噪声进行明确的推理,以及为网络提供一个从端到端排列不当的标签中学习的分级公式,也有助于产生结果。”

据arXiv报道,研究者在4月发表的一篇论文中说:“我们进一步表明,我们预测的边界比最新的DeepLab-v3分割输出得到的边界明显更好,同时使用了更轻量级的架构。”并在6月9日进行了修订。

“魔鬼就在边缘:从嘈杂的注释中学习语义边界”将在本周于加州长滩举行的CVPR 2019年会议上分享。英伟达在今天的一篇博客文章中说,近12篇部分由英伟达研究公司撰写的研究论文将在会议上以口头陈述的形式分享。

新浪声明:新浪网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python高性能(第2版)

Python高性能(第2版)

[加] 加布丽埃勒•拉纳诺(Gabriele Lanaro) / 袁国忠 / 人民邮电出版社 / 2018-8 / 59.00元

本书是一本Python性能提升指南,展示了如何利用Python的原生库以及丰富的第三方库来构建健壮的应用程序。书中阐释了如何利用各种剖析器来找出Python应用程序的性能瓶颈,并应用正确的算法和高效的数据结构来解决它们;介绍了如何有效地利用NumPy、Pandas和Cython高性能地执行数值计算;解释了异步编程的相关概念,以及如何利用响应式编程实现响应式应用程序;概述了并行编程的概念,并论述了如......一起来看看 《Python高性能(第2版)》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具