内容简介:很早之前,曾在网络上见到过 TDD 这 3 个大写的英文字母,它是 Test Driven Development 这三个单词的缩写,也就是“测试驱动开发”的意思——听起来很不错的一种理念。其理念主要是确保两件事:但后来很长一段时间里,都没再听过 TDD 的消息。有人说,TDD 已经死了,给出的意见如下:
01、前言
很早之前,曾在网络上见到过 TDD 这 3 个大写的英文字母,它是 Test Driven Development 这三个单词的缩写,也就是“测试驱动开发”的意思——听起来很不错的一种理念。
其理念主要是确保两件事:
- 确保所有的需求都能被照顾到 。
- 在代码不断增加和重构的过程中,可以检查所有的功能是否正确 。
但后来很长一段时间里,都没再听过 TDD 的消息。有人说,TDD 已经死了,给出的意见如下:
1)通常来说,开发人员不应该在没有失败的测试用例下编写代码——这似乎是合理的,但是它可能导致过度测试。例如,为了保证一行生产代码的正确性,你不由得写了 4 行测试代码,这意味着一旦这一行生产代码需要修改,你也得修改那 4 行测试代码。
2)为了遵循 TDD 而写的代码,容易进入一个误区:代码是为了满足测试用的,而忽略了实际需求。
02、TDD 到底是什么?
不管 TDD 到底死了没有,先让我们来回顾一下 TDD 到底是什么。
TDD 的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
TDD 的基本过程可以拆解为以下 6 个步骤:
1) 分析需求,把需求拆分为具体的任务。
2) 从任务列表中取出一个任务,并对其编写测试用例。
3) 由于没有实际的功能代码,测试代码不大可能会通过(红)。
4) 编写对应的功能代码,尽快让测试代码通过(绿)。
5) 对代码进行重构,并保证测试通过(重构)。
6) 重复以上步骤。
可以用下图来表示上述过程。
03、TDD 的实践过程
通常情况下,我们都习惯在需求分析完成之后,尽快地投入功能代码的编写工作中,之后再去调用和测试。
而 TDD 则不同,它假设我们已经有了一个“测试用户”了,它是功能代码的第一个使用者,尽管功能代码还不太完善。
当我们站在“测试用户”的角度去写测试代码的时候,我们要考虑的是,这个“测试用户”该如何使用功能代码呢?是通过一个类直接调用方法呢(静态方法),还是构建类的实例去调用方法呢(实例方法)?这个方法如何传参呢?方法如何命名呢?方法有返回值吗?
有了测试代码后,我们开始编写功能代码,并且要以最快地速度让测试由“红”变为“绿”,可能此时的功能代码很不优雅,不过没关系。
当测试通过以后,我们就可以放心大胆的对功能代码进行“重构”了——优化原来比较丑陋、臃肿、性能偏差的代码。
接下来,假设我们接到了一个开发需求:
汪汪队要到小镇冒险岛进行表演,门票为 99 元,冒险岛上唯一的一个 程序员 王二需要开发一款可以计算门票收入的小程序。
按照 TDD 的流程,王二需要先使用 Junit 编写一个简单的测试用例,测试预期是:销售一张门票的收入是 99 元。
public class TicketTest { private Ticket ticket; @Before public void setUp() throws Exception { ticket = new Ticket(); } @Test public void test() { BigDecimal total = new BigDecimal("99"); assertEquals(total, ticket.sale(1)); } }
为了便于编译能够顺利通过,王二需要一个简单的 Ticket 类:
public class Ticket { public BigDecimal sale(int count) { return BigDecimal.ZERO; } }
测试用例运行结果如下图所示,红色表示测试没有通过:预期结果是 99,实际结果是 0。
那接下来,王二需要快速让测试通过, Ticket.sale()
方法修改后的结果如下:
public class Ticket { public BigDecimal sale(int count) { if (count == 1) { return new BigDecimal("99"); } return BigDecimal.ZERO; } }
再运行一下测试用例,结果如下图所示,绿色表示测试通过了:预期结果是 99,实际结果是 99。
绿了,绿了,测试通过了,到了该重构功能代码的时候了。99 元是个魔法数字,至少应该声明成常量,对吧?
public class Ticket { private final static int PRICE = 99; public BigDecimal sale(int count) { if (count == 1) { return new BigDecimal(PRICE); } return BigDecimal.ZERO; } }
重构完后再运行一下测试用例,确保测试通过的情况下,再增加几个测试用例,比如说门票销量为负数、零甚至一千的情况。
public class TicketTest { private Ticket ticket; @Before public void setUp() throws Exception { ticket = new Ticket(); } @Test public void testOne() { BigDecimal total = new BigDecimal("99"); assertEquals(total, ticket.sale(1)); } @Test(expected=IllegalArgumentException.class) public void testNegative() { ticket.sale(-1); } @Test public void testZero() { assertEquals(BigDecimal.ZERO, ticket.sale(0)); } @Test public void test1000() { assertEquals(new BigDecimal(99000), ticket.sale(1000)); } }
销量为负数的时候,王二希望功能代码能够抛出异常;销量为零的时候,功能代码的计算结果应该为零;销量为一千的时候,计算结果应该为 99000。
重新运行一下测试用例,结果如下图所示:
有两个测试用例没有通过,那么王二需要继续修改功能代码,调整如下:
public class Ticket { private final static int PRICE = 99; public BigDecimal sale(int count) { if (count < 0) { throw new IllegalArgumentException("销量不能为负数"); } if (count == 0) { return BigDecimal.ZERO; } if (count == 1) { return new BigDecimal(PRICE); } return new BigDecimal(PRICE * count); } }
再运行一下测试用例,发现都通过了。又到了重构的时候了,销量为零、或者大于等于一的时候,代码可以合并,于是重构结果如下:
public class Ticket { private final static int PRICE = 99; public BigDecimal sale(int count) { if (count < 0) { throw new IllegalArgumentException("销量不能为负数"); } return new BigDecimal(PRICE * count); } }
重构结束后,再运行测试用例,确保重构后的代码依然可用。
04、最后
从上面的实践过程可以得出如下结论:
TDD 想要做的就是让我们对自己的代码充满信心,因为我们可以通过测试代码来判断这段代码是否正确无误。
也就是说,TDD 流程比较关键的一环在于如何写出有效的测试代码,这里有 4 个原则可以参考:
1)测试过程应该尽量模拟正常使用的过程。
2)应该尽量做到分支覆盖。
3)测试数据应该尽量包括真实数据,以及边界数据。
4)测试语句和测试数据应该尽量简单,容易理解。
注意,这 4 个原则不仅适用于 TDD,同样适用于任何流程下的单元测试。
最后,我想说的是,不管 TDD 有没有死,TDD 都不是银弹,不可能适合所有的场景,但这不应该成为我们拒绝它的理由。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 架构视角 - DDD、TDD、MDD领域驱动、测试驱动还是模型驱动?
- 使用“数据驱动测试”之前
- 《测试驱动开发》的读书笔记
- 搭建数据驱动测试框架构
- .netcore持续集成测试篇之Xunit数据驱动测试
- 在敏捷中应用测试驱动开发
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
垃圾回收的算法与实现
中村成洋、相川光 / 丁灵 / 人民邮电出版社 / 2016-7-1 / 99.00元
★ Ruby之父Matz作推荐语:上古传承的魔法,彻底揭开垃圾回收的秘密! ★ 日本天才程序员兼Lisp黑客竹内郁雄审校 本书前半介绍基本GC算法,包括标记-清除GC、引用计数、复制算法的GC、串行GC的算法、并发GC的算法等。后半介绍V8、Rubinius、Dalvik、CPython等几种具体GC的实现。本书适合各领域程序员阅读。一起来看看 《垃圾回收的算法与实现》 这本书的介绍吧!