一条 SQL 在 Apache Spark 之旅(中)

栏目: 编程工具 · 发布时间: 5年前

内容简介:优化逻辑计划阶段 - Optimizer

也可以到我个人博客阅读(点击下面阅读原文即可) https://www.iteblog.com/archives/2562.html。 又写到11点多啦,大家一定要点在看呀!朋友圈 多多 分享。

《一条 SQL 在 Apache Spark 之旅(上)》 文章中我们介绍了一条 SQL 在 Apache Spark 之旅的 Parser 和 Analyzer 两个过程,本文接上文继续介绍。

优化逻辑计划阶段 - Optimizer

在前文的绑定逻辑计划阶段对 Unresolved LogicalPlan 进行相关 transform 操作得到了 Analyzed Logical Plan,这个 Analyzed Logical Plan 是可以直接转换成 Physical Plan 然后在 Spark 中执行。但是如果直接这么弄的话,得到的 Physical Plan 很可能不是最优的,因为在实际应用中,很多低效的写法会带来执行效率的问题,需要进一步对Analyzed Logical Plan 进行处理,得到更优的逻辑算子树。于是, 针对 SQL 逻辑算子树的优化器 Optimizer 应运而生。

这个阶段的优化器主要是基于规则的(Rule-based Optimizer,简称 RBO),而绝大部分的规则都是启发式规则,也就是基于直观或经验而得出的规则,比如列裁剪(过滤掉查询不需要使用到的列)、谓词下推(将过滤尽可能地下沉到数据源端)、常量累加(比如 1 + 2 这种事先计算好) 以及常量替换(比如 SELECT * FROM table WHERE i = 5 AND j = i + 3 可以转换成 SELECT * FROM table WHERE i = 5 AND j = 8)等等。

与前文介绍绑定逻辑计划阶段类似,这个阶段所有的规则也是实现 Rule 抽象类,多个规则组成一个 Batch,多个 Batch 组成一个 batches,同样也是在 RuleExecutor 中进行执行,由于前文已经介绍了 Rule 的执行过程,本节就不再赘述。

那么针对前文的 SQL 语句,这个过程都会执行哪些优化呢?这里按照 Rule 执行顺序一一进行说明。

谓词下推

谓词下推在 Spark SQL 是由 PushDownPredicate 实现的,这个过程主要将过滤条件尽可能地下推到底层,最好是数据源。所以针对我们上面介绍的 SQL,使用谓词下推优化得到的逻辑计划如下:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

从上图可以看出,谓词下推将 Filter 算子直接下推到 Join 之前了(注意,上图是从下往上看的)。也就是在扫描 t1 表的时候会先使用 ((((isnotnull(cid#2) && isnotnull(did#3)) && (cid#2 = 1)) && (did#3 = 2)) && (id#0 > 50000)) && isnotnull(id#0) 过滤条件过滤出满足条件的数据;同时在扫描 t2 表的时候会先使用 isnotnull(id#8) && (id#8 > 50000) 过滤条件过滤出满足条件的数据。经过这样的操作,可以大大减少 Join 算子处理的数据量,从而加快计算速度。

列裁剪

列裁剪在 Spark SQL 是由 ColumnPruning 实现的。因为我们查询的表可能有很多个字段,但是每次查询我们很大可能不需要扫描出所有的字段,这个时候利用列裁剪可以把那些查询不需要的字段过滤掉,使得扫描的数据量减少。所以针对我们上面介绍的 SQL,使用列裁剪优化得到的逻辑计划如下:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

从上图可以看出,经过列裁剪后,t1 表只需要查询 id 和 value 两个字段;t2 表只需要查询 id 字段。这样减少了数据的传输,而且如果底层的文件格式为列存(比如 Parquet),可以大大提高数据的扫描速度的。

常量替换

常量替换在 Spark SQL 是由 ConstantPropagation 实现的。也就是将变量替换成常量,比如 SELECT * FROM table WHERE i = 5 AND j = i + 3 可以转换成 SELECT * FROM table WHERE i = 5 AND j = 8。这个看起来好像没什么的,但是如果扫描的行数非常多可以减少很多的计算时间的开销的。经过这个优化,得到的逻辑计划如下:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

我们的查询中有 t1.cid = 1 AND t1.did = t1.cid + 1 查询语句,从里面可以看出 t1.cid 其实已经是确定的值了,所以我们完全可以使用它计算出 t1.did。

常量累加

常量累加在 Spark SQL 是由 ConstantFolding 实现的。这个和常量替换类似,也是在这个阶段把一些常量表达式事先计算好。这个看起来改动的不大,但是在数据量非常大的时候可以减少大量的计算,减少 CPU 等资源的使用。经过这个优化,得到的逻辑计划如下:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

所以经过上面四个步骤的优化之后,得到的优化之后的逻辑计划为:

一条 SQL 在 Apache Spark 之旅(中)

对应的图如下:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

到这里,优化逻辑计划阶段就算完成了。另外,Spark 内置提供了多达70个优化 Rule,详情请参见 这里。

生成可执行的物理计划阶段 - SparkPlanner

前面介绍的逻辑计划在 Spark 里面其实并不能被执行的,为了能够执行这个 SQL,一定需要翻译成物理计划,到这个阶段 Spark 就知道如何执行这个 SQL 了。和前面逻辑计划绑定和优化不一样,这里使用的是策略(Strategy),而且前面介绍的逻辑计划绑定和优化经过 Transformations 动作之后,树的类型并没有改变,也就是说:Expression 经过 Transformations 之后得到的还是 Transformations ;Logical Plan 经过 Transformations 之后得到的还是 Logical Plan。而到了这个阶段,经过 Transformations 动作之后,树的类型改变了,由 Logical Plan 转换成 Physical Plan 了。

一个逻辑计划(Logical Plan)经过一系列的策略处理之后,得到多个物理计划(Physical Plans),物理计划在 Spark 是由 SparkPlan 实现的。多个物理计划再经过代价模型(Cost Model)得到选择后的物理计划(Selected Physical Plan),整个过程如下所示:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

Cost Model 对应的就是基于代价的优化(Cost-based Optimizations,CBO,主要由华为的大佬们实现的,详见 SPARK-16026 ),核心思想是计算每个物理计划的代价,然后得到最优的物理计划。但是在目前最新版的 Spark 2.4.3,这一部分并没有实现,直接返回多个物理计划列表的第一个作为最优的物理计划,如下:

一条 SQL 在 Apache Spark 之旅(中)

而 SPARK-16026 引入的 CBO 优化主要是在前面介绍的优化逻辑计划阶段 - Optimizer 阶段进行的,对应的 Rule 为 CostBasedJoinReorder,并且默认是关闭的,需要通过 spark.sql.cbo.enabled 或 spark.sql.cbo.joinReorder.enabled 参数开启。 所以到了这个节点,最后得到的物理计划如下:

一条 SQL 在 Apache Spark 之旅(中)

从上面的结果可以看出,物理计划阶段已经知道数据源是从 csv 文件里面读取了,也知道文件的路径,数据类型等。而且在读取文件的时候,直接将过滤条件(PushedFilters)加进去了。同时,这个 Join 变成了 BroadcastHashJoin,也就是将 t2 表的数据 Broadcast 到 t1 表所在的节点。图表示如下:

一条 SQL 在 Apache Spark 之旅(中)

如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

到这里, Physical Plan 就完全生成了。由于篇幅的原因,剩余的 SQL 处理我将在下一篇文章进行介绍,包括代码生成(WholeStageCodeGen)以及执行相关的等东西,敬请关注。

猜你喜欢

欢迎关注本公众号: iteblog_hadoop :

回复 spark_summit_201806 下载 Spark Summit North America 201806 全部PPT

spark_summit_eu_2018  下载 Spark+AI Summit europe 2018 全部PPT

回复 HBase_book 下载 2018HBase技术总结 专刊

回复 all 获取本公众号所有资料

0、回复  电子书   获取  本站所有可下载的电子书

1、 Apache Spark 2.4 回顾以及 3.0 展望

2、 重磅 | Apache Spark 社区期待的 Delta Lake 开源了

3、 Apache Spark 3.0 将内置支持 GPU 调度

4、 分布式原理:一致性哈希算法简介

5、 分布式快照算法: Chandy-Lamport 算法

6、 Kafka分区分配策略

7、 分布式原理:一文了解 Gossip 协议

8、 列式存储和行式存储它们真正的区别是什么

9、 HBase Rowkey 设计指南

10、 HBase 入门之数据刷写详细说明

11、更多大数据文章欢迎访问 https://www.iteblog.com 及本公众号( iteblog_hadoop )

12、Flink中文文档:

http://flink.iteblog.com

13、Carbondata 中文文档

http://carbondata.iteblog.com

一条 SQL 在 Apache Spark 之旅(中)

一条 SQL 在 Apache Spark 之旅(中)

又写到凌晨12点啦,大家一定要点在看呀!


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

21天学通C语言

21天学通C语言

(美国)琼斯(Bradley L.Jones) (美国)埃特肯(Peter Aitken) / 信达工作室 / 人民邮电出版社 / 2012-8 / 69.00元

《21天学通C语言(第6版•修订版)》是初学者学习C语言的经典教程。本版按最新的标准(ISO∕IEC:9899-1999),以循序渐进的方式介绍了C语言编程方面知识,并提供了丰富的实例和大量的练习。通过学习实例,并将所学的知识用于完成练习,读者将逐步了解、熟悉并精通C语言。《21天学通C语言(第6版•修订版)》包括四周的课程。第一周的课程介绍了C语言程序的基本元素,包括变量、常量、语句、表达式、函......一起来看看 《21天学通C语言》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具