如何用NLP与知识图谱支援MarTech建设?

栏目: 数据库 · 发布时间: 5年前

内容简介:所有人都向往无所不知,营销尤为如此。不同的是,营销人追求的「无所不知」更像对洞察和精准的执着——无论是大到用户数据管理,还是小到销售线索的筛选,营销人希望知道更多,从而减少销售转化过程中的损耗,提高效率。由于语言文字是人类社会信息传递的主要形式,当人们交流、存储信息的主要场地逐渐偏向互联网,触及「无所不知」的方法也在这里被渐渐发掘——人工智能领域的发展可见一斑:

所有人都向往无所不知,营销尤为如此。

不同的是,营销人追求的「无所不知」更像对洞察和精准的执着——无论是大到用户数据管理,还是小到销售线索的筛选,营销人希望知道更多,从而减少销售转化过程中的损耗,提高效率。

由于语言文字是人类社会信息传递的主要形式,当人们交流、存储信息的主要场地逐渐偏向互联网,触及「无所不知」的方法也在这里被渐渐发掘——人工智能领域的发展可见一斑:

自然语言处理(Natural Language Processing,简称NLP)技术探讨的基本命题是如何处理和运用自然语言。而知识图谱则是在NLP对语言文本的解构基础上,以图数据形式存储信息,并描述客观世界中概念、实体及其关系。

简单来说,NLP技术类似于人类读懂语言和文字的能力,而知识图谱则对应着人类储存在脑海里的知识体系。

于是,AI投资热潮过境之后,高投入、低回报、落地难的固有印象让这个领域短暂失去了吸引力。但在资本眼中,两个细分领域仍然存在大量的机会,一个是计算机视觉(CV),另一个就是自然语言处理(NLP)。

自然语言处理和知识图谱是两颗相辅相成的AI双子星,在MarTech领域已经找到了帮助营销人「无所不知」的方法:智能获客。

从智能获客快速落地的NLP

在Google开源BERT后,NLP行业迎来了自己的标杆模型,识别精准度大幅提升。再加上互联网世界中文本数据普遍,又存在大量如搜索等垂直领域的需求,该技术受到VC青睐理所当然。

但作为NLP技术重要的应用之一,知识图谱在不同环境下却表现出不同的形态,一方面,「Google知识图谱」试图还原整个现实世界联系,叙事恢弘,另一方面在MarTech领域,知识图谱的应用则从更贴近商业本质的一面展示价值,那就是智能获客。

智能获客,同时对Marketing与Sales部门产生影响:Marketing负责为销售导入优质潜在线索,属于线索管理(Lead Management)范畴。而销售部门也需要对已有数据做进一步筛选,这属于销售支持(Sales Enablement)的范畴。

IDC分析师曾认为,销售支持(Sales Enablement)其实就是「在正确的时间以正确的格式向正确的人提供正确的信息,以帮助推动特定的销售机会。」对于销售部门而言,这往往需要能够连贯地组织、查找、共享、定制和分析目标的必要框架。

在业务场景中,「正确」并不容易达成——事实上,大多数企业地销售数据很容易给销售人员造成紊乱,一般造成这一现象的原因有三:

  • 销售线索往往由多个团队输入,内容良莠不齐,导致目标画像不全

  • 行业数据信息庞杂,商业关系还原难度大

  • 潜客筛选、销售线索优先级划分困难

而这些痛点也为NLP和知识图谱的应用提供了丰富的应用场景。

「以销售为导向的企业,每天各个渠道都会产生大量的销售线索。几百人的销售团队,每天可能需要面对上万条参差不齐的线索。行业需要一套解决方案,能帮助销售人员自动补齐线索内容、自动挑选更有价值的销售线索优先触达。」百炼智能联合创始人&CTO姚从磊在接受采访时这样说道。

在姚从磊看来,销售线索是ToB销售侧的痛点之一,百炼智能据此打造了自己的智能获客四大产品:竞争分析、档案补齐、模型预测和客户裂变。

如何用NLP与知识图谱支援MarTech建设?

「档案补齐是通过知识图谱的实体对齐技术,对残缺不全的销售线索进行自动化补充整理;而以NLP技术处理后的销售端成单数据和销量数据为基础,我们可以通过建立 深度神经网络 模型帮助客户实现成单和销量的预测;此外,基于全网公开数据,知识图谱能带来客户竟对关系的提炼和KP的锁定,辅助销售工作。」姚从磊补充道。 

把数据转化成业务语言

由此看来,知识图谱在销售支持领域的应用,已经涉及到数据收集、数据治理以及数据分析三个环节。在实际辅助销售人员的过程中,知识图谱技术承担着将销售大数据转化成「业务语言」的重任。

例如,客户过往成单总的信息,返回到客户模型中,成为能够基本定性的数据,如公司规模、地理位置附近存在竞对产品的数量等。随后这些数据进入到深度学习神经网络模型,最终形成应用标签,最终预测销量。

但在ToB企业销售部门,知识图谱也有自己发展的不利因素,如可供训练模型使用数据量相对较少,不同行业数据类型差异较大等问题。 

在被问及这些问题时,姚从磊表示训练数据较少的问题确实存在,但只要数据规模能保证在千级,知识图谱+模型就能产生相对有效的标签支持。另外,GAN (对抗生成网络)技术能帮助模型在较少训练数据下,获得较高的预测准确率。 

而不同行业的数据类型不同的影响并不大,知识图谱产品的服务模式是可以切换到其他行业的,需要调整的只是数据刻画和分析的维度。

「我们从一开始只做销售线索的筛选导入到如今,一年时间里已经开始与部分客户合作进行销量预测。」姚从磊说,「接下来,我们会逐步将自然语言处理技术的召回率提升到较高的水平(平均98%以上)并部署GAN (对抗生成网络)」

消费者全量数据的知识图谱畅想

对于那些具备通用产品,客户群大而分散,且有筛选销售目标需求的用户,知识图谱是一个见效迅速且成本不高的销售效率提升之法。 

百炼智能选择了从智能获客切入,同时在销售支持(Sales Enablement)与线索管理(Lead Management)的细分赛道上不断深耕。但对知识图谱而言,如果将「销售数据」换成营销「全量数据」,那么NLP和知识图谱技术对Martech的影响会更加广泛。

销售业务场景下,人们主要工作内容是拜访客户。在拜访完一家客户后,销售人员往往需要了解就近还有哪些客户,这意味着基于地理位置的对潜客的筛选能够帮助到销售人员,而地理信息仅仅是一个维度。

如果将地理位置、竞对关系、人事变动、近期行业资讯等公网「知识图谱」,与目标客户的网页浏览URL、APP行为、第三方平台行为等营销「知识图谱」结合起来,营销人员将最大限度地「在正确的时间,像正确的人传达正确的信息」,销售人员也将最大限度地「在正确的时间,正确的地点,接触正确的人,提供正确的产品信息沟通」,最终双方协同推动特定的销售机会。

这是比较理想的基于消费者全量信息建立知识图谱的情景——高精度的知识图谱必然需要NLP技术与强大的AI模型共同实现,如消费者访问海量的URL数据,首先需要用爬虫获取页面内容,再通过NLP语义识别为每一个URL贴上相应标签。

随着CDP、数据中台概念的兴起,广告主越来越关注第一方数据与第三方数据的结合,建立自己的私域流量池。但在全量数据面前,数据标签打通成本高、难度大,也限制着广告主建立自己的洞察。

而知识图谱,可能就是那条捷径。


以上所述就是小编给大家介绍的《如何用NLP与知识图谱支援MarTech建设?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

HTML和XHTML权威指南(第五版)

HTML和XHTML权威指南(第五版)

Chuck Musciano、Bill Kennedy / 技桥 / 清华大学出版社 / 2004-6-1 / 72.00元

HTML!XHTML!级联样式表!编写网页的标准很难整理,因为各种版本的Netscape和Internet Explorer在其实现方式上千差万别。《HTML与XHTML权威指南》将这些标准全部介绍给了读者。本书作者找出了各种标准和浏览器特性,并在创建网页方面为读者提出了很多建议,以便能够被更广泛的浏览者和平台所接受。 学习HTML或XHTML和学习其他任何语言一样。大部分学生都是从......一起来看看 《HTML和XHTML权威指南(第五版)》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码