内容简介:基于需要配置项目中的
FOFA Pro API
是资产搜索引擎
FOFA Pro
为开发者提供的 RESTful API
接口, 允许开发者在自己的项目中集成
FOFA Pro
的功能。
FOFA SDK
基于
FOFA Pro API
编写的 Spring Boot
版 SDK
, 方便 java 开发者快速将
FOFA Pro
集成到自己的项目中。
添加依赖
Apache Maven
<dependency> <groupId>com.r4v3zn.fofa</groupId> <artifactId>fofa-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency>
Gradle Groovy DSL
implementation 'com.r4v3zn.fofa:fofa-spring-boot-starter:1.0.0'
Gradle Kotlin DSL
compile("com.r4v3zn.fofa:fofa-spring-boot-starter:1.0.0")
Scala SBT
libraryDependencies += "com.r4v3zn.fofa" % "fofa-spring-boot-starter" % "1.0.0"
Apache Ivy
<dependency org="com.r4v3zn.fofa" name="fofa-spring-boot-starter" rev="1.0.0" />
Groovy Grape
@Grapes( @Grab(group='com.r4v3zn.fofa', module='fofa-spring-boot-starter', version='1.0.0') )
Leiningen
[com.r4v3zn.fofa/fofa-spring-boot-starter "1.0.0"]
Apache Buildr
'com.r4v3zn.fofa:fofa-spring-boot-starter:jar:1.0.0'
Maven Central Badge
[![Maven Central](https://img.shields.io/maven-central/v/com.r4v3zn.fofa/fofa-spring-boot-starter.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22com.r4v3zn.fofa%22%20AND%20a:%22fofa-spring-boot-starter%22)
PURL
pkg:maven/com.r4v3zn.fofa/[email protected]1.0.0
Bazel
maven_jar( name = "fofa-spring-boot-starter", artifact = "com.r4v3zn.fofa:fofa-spring-boot-starter:1.0.0", sha1 = "41b8264a15fcd137652d5194603ee4ce661d55e0", )
使用
字段名称 | 描述 |
---|---|
email
|
用户登陆
FOFA Pro
使用的 Email
|
key
|
前往
个人中心
查看 API Key
|
配置
需要配置项目中的 application.yml
或 application.properties
文件。
application.yml
fofa: email: key:
application.properties
fofa.email= fofa.key=
获取用户信息
@Autowired private FofaClient client; public String test() throws Exception { System.out.println(client.getUser()); return "hello"; }
获取FOFA Pro 搜索结果
代码
@Autowired private FofaClient client; public String test() throws Exception { String q = "app=\"Solr\""; System.out.println(client.getData(q)); return "hello"; }
响应
FofaData{mode='extended', page=1, size=8578, totalPage=86, query='app="Solr"', results=[52.204.201.10:8080, 39.106.133.253:8081, 168.61.45.247:3000, 185.145.32.101:9090, 47.92.153.193:8083, https://54.177.198.16:9443, https://46.137.115.176, 109.202.145.150:9090, 18.229.36.175, https://52.65.18.222, 94.103.24.81, 128.119.168.198:8080, 45.56.107.121:8090, 159.65.33.96:8080, 165.28.246.132, 34.205.15.100:8080, 3.89.155.86, 101.200.142.15:8099, 45.56.91.166:8090, 107.21.102.229, 89.28.161.145:8083, 35.165.137.220, 162.243.2.73:32768, 3.82.255.95:8080, 52.22.6.26, 96.126.97.74:8090, https://solr.swoonery.com, 63.34.225.181:8083, 18.223.238.90:7777, 167.99.252.65:8081, 18.232.114.197, 96.126.104.116:8090, 52.17.255.254, 101.201.145.141:8888, 13.228.98.189, 52.66.197.212:8081, 34.226.45.218:9443, 36.111.196.193:8082, 52.80.87.182, 97.107.133.44:8090, 173.255.217.135:8080, 34.199.97.120:8081, 52.17.131.156, https://13.55.200.182:443, 23.23.104.210, 54.68.95.160, https://54.77.13.29:8082, 66.175.209.109:8090, 52.200.107.211:8080, 104.130.124.46:7777, 192.231.177.172:8090, 54.221.155.2, 203.135.191.199:8080, 218.93.127.8:9080, 101.251.241.194:8081, 115.79.204.120:8888, 39.106.23.13:8180, https://52.16.231.131:8080, 52.5.53.165:8080, 39.106.180.220:8180, 52.67.86.138, https://52.26.130.143, 52.37.105.68, 23.239.19.16:8090, 52.58.193.2, 168.218.15.134, 52.44.108.125:9443, 76.210.250.82:32768, 52.71.163.53, 92.243.20.10:8080, 157.249.39.129, www.marineparts.us:8983, 185.135.12.139:8080, 123.207.239.114:8082, 66.175.209.253:8090, 66.175.209.38:8090, 173.255.223.210:8090, 14.29.118.239:20000, 70.142.24.61:8080, 3.87.173.6:8001, 47.107.106.243:20000, 101.201.117.191, 118.190.215.162, 116.203.141.150:8080, 58.250.149.11:8085, 3.88.123.255, 173.255.216.58:8090, 14.139.13.78:8080, 54.149.94.198, 142.93.183.248:8082, 216.47.157.209:8090, 202.202.240.113:7777, 198.101.238.25:8080, 52.66.72.8:8888, 92.243.20.10:8081, 23.239.23.20:8090, 39.107.94.23:8888, 79.137.82.228:8083, 120.55.191.189:8010, 52.21.16.23:8080]}
更新日志
2019-06-17
- 开源
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
机器学习算法原理与编程实践
郑捷 / 电子工业出版社 / 2015-11 / 88.00
本书是机器学习原理和算法编码实现的基础性读物,内容分为两大主线:单个算法的原理讲解和机器学习理论的发展变迁。算法除包含传统的分类、聚类、预测等常用算法之外,还新增了深度学习、贝叶斯网、隐马尔科夫模型等内容。对于每个算法,均包括提出问题、解决策略、数学推导、编码实现、结果评估几部分。数学推导力图做到由浅入深,深入浅出。结构上数学原理与程序代码一一对照,有助于降低学习门槛,加深公式的理解,起到推广和扩......一起来看看 《机器学习算法原理与编程实践》 这本书的介绍吧!