内容简介:欢迎关注公众号:【Netty框架的主要线程就是I/O线程,线程模型的设计决定了系统的吞吐量、并发性和安全性等架构质量属性。所以了解一下NioEventLoop。基本上所有的网络处理程序都有以下基本的处理过程: Read request Decode request Process service Encode reply Send reply
欢迎关注公众号:【 爱编程 】 如果有需要后台回复 2019 赠送 1T的学习资料 哦!!
简介
Netty框架的主要线程就是I/O线程,线程模型的设计决定了系统的吞吐量、并发性和安全性等架构质量属性。所以了解一下NioEventLoop。
Reactor线程模型
基本上所有的网络处理程序都有以下基本的处理过程: Read request Decode request Process service Encode reply Send reply
Reactor单线程模型
这是最简单的单Reactor线程模型,它负责多路分离套接字,Accept新连接,并分派请求到处理器链中。该模型适用于处理器链中业务处理组件能快速完成的场景。但这种模型并不能充分利用多核资源,实际使用少。
Reactor多线程模型
相比上一种模型,该模型在处理器链部分采用了多线程(线程池),也就是后端程序常见的模型。但Reactor仍为单个线程。
Reactor主从模型
主从Reactor多线程:多个acceptor的NIO线程池用于接受客户端的连接。将Reactor分成两部分,mainReactor负责监听Server socket,accpet新连接,并将简历的socket分派给subReactor。subReactor负责多路分离已连接的socket,读写网络数据,将业务处理功能扔给worker线程池完成。通常subReactor个数上与CPU个数等同。
以上就是对Reactor线程模型的学习。更加详细可以参考 Doug Lea大神 的PPT gee.cs.oswego.edu/dl/cpjslide…
Netty的线程模型
netty的线程模型是可以通过设置启动类的参数来配置的,设置不同的启动参数,netty支持Reactor单线程模型、多线程模型和主从Reactor多线程模型。
Boss线程池职责如下: (1)接收客户端的连接,初始化Channel参数 (2)将链路状态变更时间通知给ChannelPipeline
worker线程池作用是: (1)异步读取通信对端的数据报,发送读事件到ChannelPipeline (2)异步发送消息到通信对端,调用ChannelPipeline的消息发送接口 (3)执行系统调用Task; (4)执行定时任务Task;
通过配置boss和worker线程池的线程个数以及是否共享线程池等方式,netty的线程模型可以在单线程、多线程、主从线程之间切换。
为了提升性能,netty在很多地方都进行了无锁设计。比如在IO线程内部进行串行操作,避免多线程竞争造成的性能问题。表面上似乎串行化设计似乎CPU利用率不高,但是通过调整NIO线程池的线程参数,可以同时启动多个串行化的线程并行运行,这种 局部无锁串行 线程设计性能更优。
NioEventLoop源码分析
基于Netty4.1.36
问题: 1.默认情况下,netty服务端起多少线程?何时启动? 2.Netty是如何解决jdk空轮询bug的? 3.Netty如何保证异步串行无锁化?
NioEventLoop创建流程
大致来说,从new NioEventLoopGroup()入手,然后到MultithreadEventLoopGroup的构造中明确的写明了默认为CPU的2倍的线程,接着new ThreadPerTaskExecutor()[线程创建器],然后就是一个死循环newChild()构造NioEventLoop,最后就是newChooser()[线程选择器]为后面的启动和执行做准备。
NioEventLoop启动流程和执行逻辑
NioEventLoop启动从客户端bind()入手,然后跟踪到doBind0(),接着到SingleThreadEventExecutor中execute(),该方法主要是添加任务addTask(task)和运行线程startThread(),然后在startThread()-->doStartThread()-->SingleThreadEventExecutor.this.run();开始执行NioEventLoop运行逻辑。
NioEventLoop启动后主要的工作
1.select() -- 检测IO事件,轮询注册到selector上面的io事件 2.processSelectedKeys() -- 处理io事件 3.runAllTasks() -- 处理外部线程扔到TaskQueue里面的任务
1.select() -- 检测IO事件
检测IO事件主要有三个部分:
deadline以及任务穿插逻辑处理:计算本次执行select截止时间(根据NioEventLoop当时是否有定时任务处理)以及判断在select的时候是否有任务要处理。
阻塞式select:未到截止时间或者任务队列为空进行一次阻塞式select操作
避免JDK空轮询的Bug:判断这次select操作是否阻塞timeoutMillis时间,未阻塞timeoutMillis时间表示触发JDK空轮询;判断触发JDK空轮询的次数是否超过阈值,达到阈值调用rebuildSelector()方法替换原来的selector操作方式避免下次JDK空轮询继续发生
private void select(boolean oldWakenUp) throws IOException { Selector selector = this.selector; try { int selectCnt = 0; long currentTimeNanos = System.nanoTime(); long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos); for (;;) { /** 1.deadline以及任务穿插逻辑处理-- 开始**/ long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L; if (timeoutMillis <= 0) { if (selectCnt == 0) { selector.selectNow(); selectCnt = 1; } break; } // If a task was submitted when wakenUp value was true, the task didn't get a chance to call // Selector#wakeup. So we need to check task queue again before executing select operation. // If we don't, the task might be pended until select operation was timed out. // It might be pended until idle timeout if IdleStateHandler existed in pipeline. if (hasTasks() && wakenUp.compareAndSet(false, true)) { selector.selectNow(); selectCnt = 1; break; } /** 1.deadline以及任务穿插逻辑处理-- 结束**/ /**2.阻塞select--开始**/ int selectedKeys = selector.select(timeoutMillis); selectCnt ++; /**2.阻塞select--结束**/ if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) { // - Selected something, // - waken up by user, or // - the task queue has a pending task. // - a scheduled task is ready for processing break; } if (Thread.interrupted()) { // Thread was interrupted so reset selected keys and break so we not run into a busy loop. // As this is most likely a bug in the handler of the user or it's client library we will // also log it. // // See https://github.com/netty/netty/issues/2426 if (logger.isDebugEnabled()) { logger.debug("Selector.select() returned prematurely because " + "Thread.currentThread().interrupt() was called. Use " + "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop."); } selectCnt = 1; break; } /**3.避免jdk空轮询的bug -- 开始 **/ long time = System.nanoTime(); if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) { // timeoutMillis elapsed without anything selected. selectCnt = 1; } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 && selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) { // The code exists in an extra method to ensure the method is not too big to inline as this // branch is not very likely to get hit very frequently. selector = selectRebuildSelector(selectCnt); selectCnt = 1; break; } currentTimeNanos = time; } /**3.避免jdk空轮询的bug -- 结束**/ if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) { if (logger.isDebugEnabled()) { logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.", selectCnt - 1, selector); } } } catch (CancelledKeyException e) { if (logger.isDebugEnabled()) { logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?", selector, e); } // Harmless exception - log anyway } } 复制代码
2. processSelectedKeys()-- 处理IO事件
selected keySet优化
select操作每次把已就绪状态的io事件添加到底层HashSet(时间复杂度为O(n))数据结构,通过反射方式将HashSet替换成数组的实现.
NioEventLoop.openSelector()
private SelectorTuple openSelector() { final Selector unwrappedSelector; try { unwrappedSelector = provider.openSelector(); } catch (IOException e) { throw new ChannelException("failed to open a new selector", e); } if (DISABLE_KEY_SET_OPTIMIZATION) { return new SelectorTuple(unwrappedSelector); } Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction<Object>() { @Override public Object run() { try { return Class.forName( "sun.nio.ch.SelectorImpl", false, PlatformDependent.getSystemClassLoader()); } catch (Throwable cause) { return cause; } } }); if (!(maybeSelectorImplClass instanceof Class) || // ensure the current selector implementation is what we can instrument. !((Class<?>) maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) { if (maybeSelectorImplClass instanceof Throwable) { Throwable t = (Throwable) maybeSelectorImplClass; logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t); } return new SelectorTuple(unwrappedSelector); } final Class<?> selectorImplClass = (Class<?>) maybeSelectorImplClass; final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet(); Object maybeException = AccessController.doPrivileged(new PrivilegedAction<Object>() { @Override public Object run() { try { Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys"); Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys"); if (PlatformDependent.javaVersion() >= 9 && PlatformDependent.hasUnsafe()) { // Let us try to use sun.misc.Unsafe to replace the SelectionKeySet. // This allows us to also do this in Java9+ without any extra flags. long selectedKeysFieldOffset = PlatformDependent.objectFieldOffset(selectedKeysField); long publicSelectedKeysFieldOffset = PlatformDependent.objectFieldOffset(publicSelectedKeysField); if (selectedKeysFieldOffset != -1 && publicSelectedKeysFieldOffset != -1) { PlatformDependent.putObject( unwrappedSelector, selectedKeysFieldOffset, selectedKeySet); PlatformDependent.putObject( unwrappedSelector, publicSelectedKeysFieldOffset, selectedKeySet); return null; } // We could not retrieve the offset, lets try reflection as last-resort. } Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true); if (cause != null) { return cause; } cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true); if (cause != null) { return cause; } selectedKeysField.set(unwrappedSelector, selectedKeySet); publicSelectedKeysField.set(unwrappedSelector, selectedKeySet); return null; } catch (NoSuchFieldException e) { return e; } catch (IllegalAccessException e) { return e; } } }); if (maybeException instanceof Exception) { selectedKeys = null; Exception e = (Exception) maybeException; logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e); return new SelectorTuple(unwrappedSelector); } selectedKeys = selectedKeySet; logger.trace("instrumented a special java.util.Set into: {}", unwrappedSelector); return new SelectorTuple(unwrappedSelector, new SelectedSelectionKeySetSelector(unwrappedSelector, selectedKeySet)); } 复制代码
processSelectedKeysOptimized()
遍历SelectionKey数组获取SelectionKey的attachment即NioChannel; SelectionKey合法获取SelectionKey的io事件进行事件处理
NioEventLoop.processSelectedKeysOptimized()
private void processSelectedKeysOptimized() { for (int i = 0; i < selectedKeys.size; ++i) { final SelectionKey k = selectedKeys.keys[i]; // null out entry in the array to allow to have it GC'ed once the Channel close // See https://github.com/netty/netty/issues/2363 selectedKeys.keys[i] = null; final Object a = k.attachment(); if (a instanceof AbstractNioChannel) { processSelectedKey(k, (AbstractNioChannel) a); } else { @SuppressWarnings("unchecked") NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a; processSelectedKey(k, task); } if (needsToSelectAgain) { // null out entries in the array to allow to have it GC'ed once the Channel close // See https://github.com/netty/netty/issues/2363 selectedKeys.reset(i + 1); selectAgain(); i = -1; } } } 复制代码
3. runAllTasks()
Task的分类和添加
MpscQueue创建NioEventLoop构造,外部线程使用addTask()方法添加task; ScheduledTaskQueue调用schedule()封装ScheduledFutureTask添加到普通任务队列
普通任务Task
SingleThreadEventExecutor.execute()-->addTask()
protected void addTask(Runnable task) { if (task == null) { throw new NullPointerException("task"); } if (!offerTask(task)) { reject(task); } } 复制代码
定时任务Task
将线程外的任务是通过加入队列实现,从而保证了线程安全。
AbstractScheduledEventExecutor.schedule() -->ScheduledFuture
<V> ScheduledFuture<V> schedule(final ScheduledFutureTask<V> task) { if (inEventLoop()) { scheduledTaskQueue().add(task); } else { execute(new Runnable() { @Override public void run() { scheduledTaskQueue().add(task); } }); } return task; } 复制代码
任务的聚合
将定时任务队列任务聚合到普通任务队列
SingleThreadEventExecutor.fetchFromScheduledTaskQueue()
private boolean fetchFromScheduledTaskQueue() { long nanoTime = AbstractScheduledEventExecutor.nanoTime(); Runnable scheduledTask = pollScheduledTask(nanoTime); while (scheduledTask != null) { if (!taskQueue.offer(scheduledTask)) { // No space left in the task queue add it back to the scheduledTaskQueue so we pick it up again. scheduledTaskQueue().add((ScheduledFutureTask<?>) scheduledTask); return false; } scheduledTask = pollScheduledTask(nanoTime); } return true; } 复制代码
ScheduledFutureTask中可以看到任务Task是先按照截止时间排序,然后按照id进行 排序 的。
public int compareTo(Delayed o) { if (this == o) { return 0; } ScheduledFutureTask<?> that = (ScheduledFutureTask<?>) o; long d = deadlineNanos() - that.deadlineNanos(); if (d < 0) { return -1; } else if (d > 0) { return 1; } else if (id < that.id) { return -1; } else if (id == that.id) { throw new Error(); } else { return 1; } } 复制代码
任务的执行
获取普通任务队列待执行任务,使用safeExecute()方法执行任务,每次当累计任务数量达到64判断当前时间是否超过截止时间中断执行后续任务
NioEventLoop.runAllTasks()
protected boolean runAllTasks(long timeoutNanos) { fetchFromScheduledTaskQueue(); Runnable task = pollTask(); if (task == null) { afterRunningAllTasks(); return false; } final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos; long runTasks = 0; long lastExecutionTime; for (;;) { safeExecute(task); runTasks ++; // Check timeout every 64 tasks because nanoTime() is relatively expensive. // XXX: Hard-coded value - will make it configurable if it is really a problem. if ((runTasks & 0x3F) == 0) { lastExecutionTime = ScheduledFutureTask.nanoTime(); if (lastExecutionTime >= deadline) { break; } } task = pollTask(); if (task == null) { lastExecutionTime = ScheduledFutureTask.nanoTime(); break; } } afterRunningAllTasks(); this.lastExecutionTime = lastExecutionTime; return true; } 复制代码
总结
主要学习了NioEventLoop的基本知识,如果有更多知识欢迎各位分享,我还是个小菜鸟。
最后
如果对 Java 、大数据感兴趣请长按二维码关注一波,我会努力带给你们价值。觉得对你哪怕有一丁点帮助的请帮忙点个赞或者转发哦。 关注公众号**【爱编码】 ,回复 2019**有相关资料哦。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 一文读懂监督学习、无监督学习、半监督学习、强化学习这四种深度学习方式
- 学习:人工智能-机器学习-深度学习概念的区别
- 统计学习,机器学习与深度学习概念的关联与区别
- 混合学习环境下基于学习行为数据的学习预警系统设计与实现
- 学习如何学习
- 深度学习的学习历程
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
王牌创业者:风口游戏
澈言 / 百花洲文艺出版社 / 2018-2 / 48.00
《王牌创业者:风口游戏》是一部围绕互联网创业展开的商战小说:故事的主人公莫飞是“毕业即创业”的当代年轻创业者的典型代表,他大学在校时就凭借创业项目拿到了天使融资,创业几年后,当产品估值越做越大时,他却忽然遭遇创业伙伴及投资人的联手陷害,失去了自己一手建立的公司。 此时, 莫飞的女友林姿参加了一场声势浩大的创业比赛,并一举夺魁,直进决赛。可在决赛中,突如其来的一场新闻事件让她名誉扫地。最终,为......一起来看看 《王牌创业者:风口游戏》 这本书的介绍吧!
SHA 加密
SHA 加密工具
HEX HSV 转换工具
HEX HSV 互换工具