内容简介:HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而访问的时间复杂度为常数级,但遍历的顺序却是无序的。 HashMap最多只允许一个key为null,允许多个key的value值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以使用ConcurrentHashMap。以下是它的类关系图:从数据结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的
前言
HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而访问的时间复杂度为常数级,但遍历的顺序却是无序的。 HashMap最多只允许一个key为null,允许多个key的value值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以使用ConcurrentHashMap。以下是它的类关系图:
1. 存储结构
从数据结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的
这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?
(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们先来看看Node是什么。
static class Node implements Map.Entry<K,V> { final int hash; final K key; V value; Node next;//指向链表的下一个node Node(int hash, K key, V value, Node next) { ... } public final K getKey(){ ... } public final V getValue() { ... } public final String toString() { ... } public final int hashCode() { ... } public final V setValue(V newValue) { ... } public final boolean equals(Object o) { ... } }复制代码
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。
(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题, Java中HashMap采用了链地址法 。
链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都有一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上(具体内容下文会说到)。
在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:
int threshold; // 所能容纳的key-value对极限 final float loadFactor; // 负载因子 int modCount; int size;复制代码
首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。
结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择。
size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。
modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。
这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。
1.1. 拉链法的工作原理
HashMap<String, String> map = new HashMap<>(); map.put("K1", "V1"); map.put("K2", "V2"); map.put("K3", "V3");
- 新建一个 HashMap,默认大小为 16;
- 插入 <K1,V1> 键值对,先计算 K1 的 hashCode 为 115,使用除留余数法得到所在的桶下标 115%16=3。
- 插入 <K2,V2> 键值对,先计算 K2 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6。
- 插入 <K3,V3> 键值对,先计算 K3 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6,插在 <K2,V2> 前面。
应该注意到链表的插入是以头插法方式进行的,例如上面的 <K3,V3> 不是插在 <K2,V2> 后面,而是插入在链表头部。
查找需要分成两步进行:
- 计算键值对所在的桶;
- 在链表上顺序查找,时间复杂度显然和链表的长度成正比。
1.2. 构造函数解析
计算数组容量
HashMap 构造函数允许用户传入的容量不是 2 的 n 次方,因为它可以自动地将传入的容量转换为 2 的 n 次方。
以下是 HashMap 中计算数组容量的代码:
static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }复制代码
2. 实现原理
HashMap的内部功能实现很多,本文主要从 根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程 三个具有代表性的点深入展开讲解。
2.1. 确定哈希桶数组索引位置
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):
方法一: static final int hash(Object key) { //jdk1.8 & jdk1.7 int h; // h = key.hashCode() 为第一步 取hashCode值 // h ^ (h >>> 16) 为第二步 高位参与运算 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } 方法二: static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有这个方法,原理是一样的只不过放到其他方法中去,例如put() return h & (length-1); //第三步 取模运算 }复制代码
这里的Hash算法分为三步:取key的hashCode值、高位运算、取模运算。
对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。
这个方法非常巧妙,它通过 h & (table.length -1)
来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。 当length总是2的n次方时, h& (length-1)
运算等价于对length取模,也就是 h%length
,但是&比%具有更高的效率。
取模的原理解析
令 x = 1<<4,即 x 为 2 的 4 次方,它具有以下性质:
x : 00010000 x-1 : 00001111 复制代码
令一个数 y 与 x-1 做与运算,可以去除 y 位级表示的第 4 位以上数:
y : 10110010 x-1 : 00001111 y&(x-1) : 00000010复制代码
这个性质和 y 对 x 取模效果是一样的:
y : 10110010 x : 00010000 y%x : 00000010复制代码
位运算的代价比求模运算小的多,因此在进行这种计算时用位运算的话能带来更高的性能。
确定桶下标的最后一步是将 key 的 hash 值对桶个数取模:hash%capacity,如果能保证 capacity 为 2 的 n 次方,那么就可以将这个操作转换为位运算。
2.2. 分析HashMap的put方法
HashMap的put方法执行过程可以通过下图来理解,通过该图对比源码可以更清楚地研究学习。
put执行过程
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
JDK1.8HashMap的put方法源码如下:
public V put(K key, V value) { // 对key的hashCode()做hash return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 步骤1:tab为空则创建 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 步骤2:计算index,并对null做处理 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 步骤3:节点key存在,直接覆盖value if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 步骤4:判断该链为红黑树 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 步骤5:该链为链表 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key,value,null); //链表长度大于8转换为红黑树进行处理 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } // key已经存在直接覆盖value if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 步骤6:超过最大容量 就扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }复制代码
HashMap 允许插入key为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对。
private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; }复制代码
使用链表的头插法,也就是新的键值对插在链表的头部,而不是链表的尾部。
在jdk1.8之前是插入头部的,在jdk1.8中是插入尾部的。
void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; // 头插法,链表头部指向新的键值对 table[bucketIndex] = new Entry<>(hash, key, value, e); size++; } Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } 复制代码
2.3. 扩容-基本原理
扩容(resize)就是重新计算table桶容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然 Java 里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们一个小教室只能坐一个班,如果想更多的学生进来听课,就得换大教室上课。
和扩容相关的参数主要有:capacity、size、threshold 和 load_factor。
参数 |
含义 |
capacity |
table 的容量大小,默认为 16。需要注意的是 capacity 必须保证为 2 的 n 次方。 |
size |
table 的实际使用量。 |
threshold |
size 的临界值,size 必须小于 threshold,如果大于等于,就必须进行扩容操作。 |
loadFactor |
装载因子,table 能够使用的比例,threshold = capacity * loadFactor。 |
static final int DEFAULT_INITIAL_CAPACITY = 16; static final int MAXIMUM_CAPACITY = 1 << 30; static final float DEFAULT_LOAD_FACTOR = 0.75f; transient Entry[] table; transient int size; int threshold; final float loadFactor; transient int modCount;复制代码
从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍。
void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); }复制代码
扩容使用 resize() 实现,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此这一步是很费时的。
我们分析下resize的源码,这里使用的是JDK1.7的代码,好理解一些,本质上区别不大。
void resize(int newCapacity) { //传入新的容量 Entry[] oldTable = table; //引用扩容前的Entry数组 int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了 threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了 return; } Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组 transfer(newTable); //将数据转移到新的Entry数组里 table = newTable; //HashMap的table属性引用新的Entry数组 threshold = (int)(newCapacity * loadFactor);//修改阈值 } 复制代码
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。
void transfer(Entry[] newTable) { Entry[] src = table; //src引用了旧的Entry数组 int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组 Entry e = src[j]; //取得旧Entry数组的每个元素 if (e != null) { //释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象) src[j] = null; do { Entry next = e.next; //!!重新计算每个元素在数组中的位置 int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; //标记[1] newTable[i] = e; //将元素放在数组上 e = next; //访问下一个Entry链上的元素 } while (e != null); } } } 复制代码
其实上面的数组扩容、重新计算下标值并将旧数据插入到新数组的过程并不难,有意思的一点是JDK1.8在这里对扩容后的元素移动操作做了优化,具体过程如下。
经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。
看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的范围在高位多1bit(红色),因此新的index就会发生这样的变化:
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。
具体细节大家不妨可以去看看JDK1.8的源码中resize是怎么写的,这个思路的确十分巧妙。
3. 为什么HashMap线程不安全?
在多线程使用场景中,应该尽量避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。那么为什么说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能造成死循环。代码例子如下(便于理解,仍然使用JDK1.7的环境):
public class HashMapInfiniteLoop { private static HashMap map = new HashMap(2,0.75f); public static void main(String[] args) { map.put(5, "C"); new Thread("Thread1") { public void run() { map.put(7, "B"); System.out.println(map); }; }.start(); new Thread("Thread2") { public void run() { map.put(3, "A); System.out.println(map); }; }.start(); } } 复制代码
其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就需要进行resize。
通过设置断点让线程1和线程2同时debug到transfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的“Entry next = e.next;” 这一行;然后放开线程2的的断点,让线程2进行resize。结果如下图。
注意,Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。
线程一被调度回来执行,先是执行 newTalbe[i] = e, 然后是e = next,导致了e指向了key(7),而下一次循环的next = e.next导致了next指向了key(3)。
e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。
于是,当我们用线程一调用map.get(11)时,就会发现问题,进入一个死循环了。
4. 与 HashTable 的比较
- hashmap不是线程安全的、hashtable是安全的
- HashMap允许将 null 作为一个 entry 的 key 或者 value,而 Hashtable 不允许。
- HashMap 把 Hashtable 的 contains 方法去掉了,改成 containsValue 和 containsKey。因为 contains 方法容易让人引起误解。
- HashTable 继承自 Dictionary 类,而 HashMap 是 Java1.2 引进的 Map interface 的一个实现。
- HashTable 的方法是 Synchronized 的,而 HashMap 不是,在多个线程访问 Hashtable 时,不需要自己为它的方法实现同步,而 HashMap 就必须为之提供外同步,或者改为使用ConcurrentHashMap。
- Hashtable 和 HashMap 采用的 hash/rehash 算法都大概一样,所以性能不会有很大的差异。
- HashMap 不能保证随着时间的推移 Map 中的元素次序是不变的。
- HashMap 的迭代器是 fail-fast 迭代器。
5. 总结
- 扩容是一个特别耗性能的操作,所以当 程序员 在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。
- 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改。
- HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。
- JDK1.8引入红黑树很大程度优化了HashMap的性能。
阅读源码是一件十分耗费精力的事情,但从中你可以领悟到JDK作者的巧妙思路,在源码层面去理解为什么HashMap是线程不安全的,HashMap的扩容机制等等,而不是仅仅停留在会用HashMap这个容器的表面理解上。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 以太坊源码分析(36)ethdb源码分析
- [源码分析] kubelet源码分析(一)之 NewKubeletCommand
- libmodbus源码分析(3)从机(服务端)功能源码分析
- [源码分析] nfs-client-provisioner源码分析
- [源码分析] kubelet源码分析(三)之 Pod的创建
- Spring事务源码分析专题(一)JdbcTemplate使用及源码分析
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
机器学习及其应用2007
周志华 编 / 清华大学 / 2007-10 / 37.00元
机器学习是人工智能的一个核心研究领域,也是近年来计算机科学中最活跃的研究分支之一。目前,机器学习技术不仅在计算机科学的众多领域中大显身手,还成为一些交叉学科的重要支撑技术。本书邀请相关领域的专家撰文,以综述的形式介绍机器学习中一些领域的研究进展。全书共分13章,内容涉及高维数据降维、特征选择、支持向量机、聚类、强化学习、半监督学习、复杂网络、异构数据、商空间、距离度量以及机器学习在自然语言处理中的......一起来看看 《机器学习及其应用2007》 这本书的介绍吧!