源码分析——HashMap

栏目: 编程工具 · 发布时间: 6年前

内容简介:HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而访问的时间复杂度为常数级,但遍历的顺序却是无序的。 HashMap最多只允许一个key为null,允许多个key的value值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以使用ConcurrentHashMap。以下是它的类关系图:从数据结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的

前言

HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而访问的时间复杂度为常数级,但遍历的顺序却是无序的。 HashMap最多只允许一个key为null,允许多个key的value值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以使用ConcurrentHashMap。以下是它的类关系图:

源码分析——HashMap

1. 存储结构

从数据结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的

源码分析——HashMap

这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?

(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们先来看看Node是什么。

static class Node implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node next;//指向链表的下一个node

        Node(int hash, K key, V value, Node next) { ... }
        public final K getKey(){ ... }
        public final V getValue() { ... }
        public final String toString() { ... }
        public final int hashCode() { ... }
        public final V setValue(V newValue) { ... }
        public final boolean equals(Object o) { ... }
}复制代码

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。

(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题, Java中HashMap采用了链地址法

链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都有一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上(具体内容下文会说到)。

在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:

int threshold;             // 所能容纳的key-value对极限 
final float loadFactor;    // 负载因子
int modCount;  
int size;复制代码

首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择。

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。

modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。

1.1. 拉链法的工作原理

HashMap<String, String> map = new HashMap<>(); map.put("K1", "V1"); map.put("K2", "V2"); map.put("K3", "V3");

  • 新建一个 HashMap,默认大小为 16;
  • 插入 <K1,V1> 键值对,先计算 K1 的 hashCode 为 115,使用除留余数法得到所在的桶下标 115%16=3。
  • 插入 <K2,V2> 键值对,先计算 K2 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6。
  • 插入 <K3,V3> 键值对,先计算 K3 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6,插在 <K2,V2> 前面。

应该注意到链表的插入是以头插法方式进行的,例如上面的 <K3,V3> 不是插在 <K2,V2> 后面,而是插入在链表头部。

查找需要分成两步进行:

  • 计算键值对所在的桶;
  • 在链表上顺序查找,时间复杂度显然和链表的长度成正比。

1.2. 构造函数解析

计算数组容量

HashMap 构造函数允许用户传入的容量不是 2 的 n 次方,因为它可以自动地将传入的容量转换为 2 的 n 次方。

以下是 HashMap 中计算数组容量的代码:

static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}复制代码

2. 实现原理

HashMap的内部功能实现很多,本文主要从 根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程 三个具有代表性的点深入展开讲解。

2.1. 确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) {
//jdk1.7的源码,jdk1.8没有这个方法,原理是一样的只不过放到其他方法中去,例如put()
     return h & (length-1);  //第三步 取模运算
}复制代码

这里的Hash算法分为三步:取key的hashCode值、高位运算、取模运算。

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。 当length总是2的n次方时, h& (length-1) 运算等价于对length取模,也就是 h%length ,但是&比%具有更高的效率。

取模的原理解析

令 x = 1<<4,即 x 为 2 的 4 次方,它具有以下性质:

x   : 00010000
x-1 : 00001111
复制代码

令一个数 y 与 x-1 做与运算,可以去除 y 位级表示的第 4 位以上数:

y       : 10110010
x-1     : 00001111
y&(x-1) : 00000010复制代码

这个性质和 y 对 x 取模效果是一样的:

y   : 10110010
x   : 00010000
y%x : 00000010复制代码

位运算的代价比求模运算小的多,因此在进行这种计算时用位运算的话能带来更高的性能。

确定桶下标的最后一步是将 key 的 hash 值对桶个数取模:hash%capacity,如果能保证 capacity 为 2 的 n 次方,那么就可以将这个操作转换为位运算。

2.2. 分析HashMap的put方法

HashMap的put方法执行过程可以通过下图来理解,通过该图对比源码可以更清楚地研究学习。

源码分析——HashMap

put执行过程

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

JDK1.8HashMap的put方法源码如下:

public V put(K key, V value) {
      // 对key的hashCode()做hash
      return putVal(hash(key), key, value, false, true);
  }
  
  final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                 boolean evict) {
      Node<K,V>[] tab; Node<K,V> p; int n, i;
      // 步骤1:tab为空则创建
     if ((tab = table) == null || (n = tab.length) == 0)
         n = (tab = resize()).length;
     // 步骤2:计算index,并对null做处理 
     if ((p = tab[i = (n - 1) & hash]) == null) 
         tab[i] = newNode(hash, key, value, null);
     else {
         Node<K,V> e; K k;
         // 步骤3:节点key存在,直接覆盖value
         if (p.hash == hash &&
             ((k = p.key) == key || (key != null && key.equals(k))))
             e = p;
         // 步骤4:判断该链为红黑树
         else if (p instanceof TreeNode)
             e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
         // 步骤5:该链为链表
         else {
             for (int binCount = 0; ; ++binCount) {
                 if ((e = p.next) == null) {
                     p.next = newNode(hash, key,value,null);
                      //链表长度大于8转换为红黑树进行处理
                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
                         treeifyBin(tab, hash);
                     break;
                 }
                    // key已经存在直接覆盖value
                 if (e.hash == hash &&
                     ((k = e.key) == key || (key != null && key.equals(k)))) 
							break;
                 p = e;
             }
         }
         
         if (e != null) { // existing mapping for key
             V oldValue = e.value;
             if (!onlyIfAbsent || oldValue == null)
                 e.value = value;
             afterNodeAccess(e);
             return oldValue;
         }
     }

     ++modCount;
     // 步骤6:超过最大容量 就扩容
     if (++size > threshold)
         resize();
     afterNodeInsertion(evict);
     return null;
 }复制代码

HashMap 允许插入key为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对。

private V putForNullKey(V value) {
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
        if (e.key == null) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    addEntry(0, null, value, 0);
    return null;
}复制代码

使用链表的头插法,也就是新的键值对插在链表的头部,而不是链表的尾部。

在jdk1.8之前是插入头部的,在jdk1.8中是插入尾部的。

void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
        resize(2 * table.length);
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = indexFor(hash, table.length);
    }

    createEntry(hash, key, value, bucketIndex);
}

void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    // 头插法,链表头部指向新的键值对
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
}

Entry(int h, K k, V v, Entry<K,V> n) {
    value = v;
    next = n;
    key = k;
    hash = h;
}
复制代码

2.3. 扩容-基本原理

扩容(resize)就是重新计算table桶容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然 Java 里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们一个小教室只能坐一个班,如果想更多的学生进来听课,就得换大教室上课。

和扩容相关的参数主要有:capacity、size、threshold 和 load_factor。

参数

含义

capacity

table 的容量大小,默认为 16。需要注意的是 capacity 必须保证为 2 的 n 次方。

size

table 的实际使用量。

threshold

size 的临界值,size 必须小于 threshold,如果大于等于,就必须进行扩容操作。

loadFactor

装载因子,table 能够使用的比例,threshold = capacity * loadFactor。

static final int DEFAULT_INITIAL_CAPACITY = 16;
static final int MAXIMUM_CAPACITY = 1 << 30;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
transient Entry[] table;
transient int size;
int threshold;
final float loadFactor;
transient int modCount;复制代码

从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍。

void addEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    if (size++ >= threshold)
        resize(2 * table.length);
}复制代码

扩容使用 resize() 实现,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此这一步是很费时的。

我们分析下resize的源码,这里使用的是JDK1.7的代码,好理解一些,本质上区别不大。

void resize(int newCapacity) {   //传入新的容量
     Entry[] oldTable = table;    //引用扩容前的Entry数组
     int oldCapacity = oldTable.length;         
     if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了
         threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
         return;
     }
  
     Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
    transfer(newTable);                         //将数据转移到新的Entry数组里
    table = newTable;                           //HashMap的table属性引用新的Entry数组
    threshold = (int)(newCapacity * loadFactor);//修改阈值
}
复制代码

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

void transfer(Entry[] newTable) {
    Entry[] src = table;                   //src引用了旧的Entry数组
    int newCapacity = newTable.length;
    for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
        Entry e = src[j];       //取得旧Entry数组的每个元素
        if (e != null) {
//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
            src[j] = null;
            do {
                Entry next = e.next;
                //!!重新计算每个元素在数组中的位置
               int i = indexFor(e.hash, newCapacity);
               e.next = newTable[i]; //标记[1]
               newTable[i] = e;      //将元素放在数组上
               e = next;             //访问下一个Entry链上的元素
           } while (e != null);
       }
   }
} 复制代码

其实上面的数组扩容、重新计算下标值并将旧数据插入到新数组的过程并不难,有意思的一点是JDK1.8在这里对扩容后的元素移动操作做了优化,具体过程如下。

经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。

看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

源码分析——HashMap

元素在重新计算hash之后,因为n变为2倍,那么n-1的范围在高位多1bit(红色),因此新的index就会发生这样的变化:

源码分析——HashMap

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。

具体细节大家不妨可以去看看JDK1.8的源码中resize是怎么写的,这个思路的确十分巧妙。

3. 为什么HashMap线程不安全?

在多线程使用场景中,应该尽量避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。那么为什么说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能造成死循环。代码例子如下(便于理解,仍然使用JDK1.7的环境):

public class HashMapInfiniteLoop {  
    private static HashMap map = new HashMap(2,0.75f);  
    public static void main(String[] args) {  
        map.put(5, "C");  
        new Thread("Thread1") {  
            public void run() {  
                map.put(7, "B");  
                System.out.println(map);  
            };  
        }.start();  
        new Thread("Thread2") {  
            public void run() {  
                map.put(3, "A);  
                System.out.println(map);  
            };  
        }.start();        
    }  
} 复制代码

其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就需要进行resize。

通过设置断点让线程1和线程2同时debug到transfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的“Entry next = e.next;” 这一行;然后放开线程2的的断点,让线程2进行resize。结果如下图。

源码分析——HashMap

注意,Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。

线程一被调度回来执行,先是执行 newTalbe[i] = e, 然后是e = next,导致了e指向了key(7),而下一次循环的next = e.next导致了next指向了key(3)。

源码分析——HashMap

e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

源码分析——HashMap

于是,当我们用线程一调用map.get(11)时,就会发现问题,进入一个死循环了。

4. 与 HashTable 的比较

  • hashmap不是线程安全的、hashtable是安全的
  • HashMap允许将 null 作为一个 entry 的 key 或者 value,而 Hashtable 不允许。
  • HashMap 把 Hashtable 的 contains 方法去掉了,改成 containsValue 和 containsKey。因为 contains 方法容易让人引起误解。
  • HashTable 继承自 Dictionary 类,而 HashMap 是 Java1.2 引进的 Map interface 的一个实现。
  • HashTable 的方法是 Synchronized 的,而 HashMap 不是,在多个线程访问 Hashtable 时,不需要自己为它的方法实现同步,而 HashMap 就必须为之提供外同步,或者改为使用ConcurrentHashMap。
  • Hashtable 和 HashMap 采用的 hash/rehash 算法都大概一样,所以性能不会有很大的差异。
  • HashMap 不能保证随着时间的推移 Map 中的元素次序是不变的。
  • HashMap 的迭代器是 fail-fast 迭代器。

5. 总结

  1. 扩容是一个特别耗性能的操作,所以当 程序员 在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。
  2. 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改。
  3. HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。
  4. JDK1.8引入红黑树很大程度优化了HashMap的性能。

阅读源码是一件十分耗费精力的事情,但从中你可以领悟到JDK作者的巧妙思路,在源码层面去理解为什么HashMap是线程不安全的,HashMap的扩容机制等等,而不是仅仅停留在会用HashMap这个容器的表面理解上。

参考自: tech.meituan.com/2016/06/24/…


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Practical JavaScript, DOM Scripting and Ajax Projects

Practical JavaScript, DOM Scripting and Ajax Projects

Frank Zammetti / Apress / April 16, 2007 / $44.99

http://www.amazon.com/exec/obidos/tg/detail/-/1590598164/ Book Description Practical JavaScript, DOM, and Ajax Projects is ideal for web developers already experienced in JavaScript who want to ......一起来看看 《Practical JavaScript, DOM Scripting and Ajax Projects》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换