几句话总结一个算法之DQN

栏目: 编程工具 · 发布时间: 6年前

  • DQN利用深度学习对Q-learning的一个扩展,回顾上篇文章,Q-learning的核心在于Q(s,a)的建模。如果状态s非常复杂,很难通过一张表来存储所有的状态。

  • 深度学习正好可以自动提取s的特征,所以我们只需要对Q(s,a)建立一个深度学习网络

  • 但是s可能是一个极高维度的向量,a可能只低维度向量(如上下左右),建模起来可能有点困难

  • 解决的办法是,对每个动作a都建一个网络。因为对于每个网络的a输入的是个固定值,没有任何信息量可以忽略掉,问题就可以简化为对每个建立一个网络来表示Q(s)

  • 更进一步简化,这些网络在特征提取层可以参数共享一起训练,在输出层则输出各自动作的期望奖励,做法类似于现在的多任务学习

  • 与Q-learning原理相同,Q(s, a)表示了模型根据历史数据的预测奖励,而Q'(s,a)表示对当前行动的预测奖励。一个好的模型,Q(s,a) 和 Q'(s,a)应该尽量接近,用平方损失函数正好可以表示

  • 其他一些trick:experience replay 和 异步更新,做法都很简单,有需要可以去了解下


以上所述就是小编给大家介绍的《几句话总结一个算法之DQN》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

正则表达式必知必会

正则表达式必知必会

Ben Forta / 杨涛、王建桥、杨晓云 / 人民邮电出版社 / 2007 / 29.00元

正则表达式是一种威力无比强大的武器,几乎在所有的程序设计语言里和计算机平台上都可以用它来完成各种复杂的文本处理工作。本书从简单的文本匹配开始,循序渐进地介绍了很多复杂内容,其中包括回溯引用、条件性求值和前后查找,等等。每章都为读者准备了许多简明又实用的示例,有助于全面、系统、快速掌握正则表达式,并运用它们去解决实际问题。 本书适合各种语言和平台的开发人员。一起来看看 《正则表达式必知必会》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

随机密码生成器
随机密码生成器

多种字符组合密码