《前端算法系列》如何让前端代码速度提高60倍

栏目: 编程工具 · 发布时间: 5年前

内容简介:今天的问题从排序算法入手,来讲解如何根据业务需求,结合金典的算法,来实现js高性能开发。老板让小明给公司的20000+条数据排个序,但是由于排序的操作会频繁发生,如果操作执行的时间很慢,则会严重降低用户体验,听到这条噩耗后小明开始了代码。1.毫无违和感的排序算法 小明根据需求,思考了一会,写下了如下算法:
《前端算法系列》如何让前端代码速度提高60倍

今天的问题从 排序 算法入手,来讲解如何根据业务需求,结合金典的算法,来实现js高性能开发。

情景

老板让小明给公司的20000+条数据排个序,但是由于排序的操作会频繁发生,如果操作执行的时间很慢,则会严重降低用户体验,听到这条噩耗后小明开始了代码。

1.毫无违和感的 排序算法 小明根据需求,思考了一会,写下了如下算法:

/**
 * max排序
 * @param {*} arr 
 * 耗时:760ms
 */
 function maxSort(arr) {
     let result = [...arr];
     for(let i=0,len=result.length; i< len; i++) {
        let minV = Math.min(...result.slice(i))
        let pos = result.indexOf(minV,i)
        result.splice(pos, 1)
        result.unshift(minV)
     }
     return result.reverse()
 }
复制代码

自信的小明陶醉在自己的算法中,准备测试一下性能,

/*
 * @Author: Mr Jiang.Xu 
 * @Date: 2019-06-11 10:25:23 
 * @Last Modified by: Mr Jiang.Xu
 * @Last Modified time: 2019-06-13 21:03:59
 * @desc 测试函数执行的时间
 */

const testArr = require('./testArr');
module.exports = async function getFnRunTime(fn) {
    let len = testArr.length;
    let startTime = Date.now(), endTime;
    let result = await fn(testArr);
    endTime = Date.now();
    console.log(result);
    console.log(`total time:${endTime-startTime}ms`,
                'test array\'length:' + len, 
                result.length
    );
}
复制代码

运行该测试函数后,耗时760ms,小明觉得还不错,放到项目中后,第一次操作还好,连续操作了几次后,页面明显卡顿。。。(求此时小明心里的阴影面积)

2.冒泡排序

小明不甘心,在网上查找相关资料后,写下了如下冒泡排序代码:

/**
  * 置换函数
  * @param {源数组} arr 
  * @param {原数组的A项} indexA 
  * @param {原数组的B项} indexB 
  */
 function swap(arr, indexA, indexB) {
    [arr[indexA], arr[indexB]] = [arr[indexB], arr[indexA]];
 }

/**
 * 原始冒泡排序
 * @param {数组} arr 
 * 耗时:377ms
 */
 function bubbleSort1(arr) {
    for (let i = arr.length - 1; i > 0; i--) {
      for (let j = 0; j < i; j++) {
        if (arr[j] > arr[j + 1]) {
          swap(arr, j, j + 1);
        }
      }
    }
  
    return arr;
  }
复制代码

测试后耗时377ms,完美,小明放到项目中测试,频繁排序还是会有点卡顿,能不能再优化一下呢? 思考许久之后,小明完善了冒泡排序:

/**
 * 利用索引优化后的冒泡排序
 * @param {数组} arr 
 * 耗时:350ms
 */ 
function bubbleSort2(arr) {
    let i = arr.length - 1;

    while (i > 0) {
        let pos = 0;

        for (let j = 0; j < i; j++) {
        if (arr[j] > arr[j + 1]) {
            pos = j;
            swap(arr, j, j + 1);
        }
        }
        i = pos;
    }

    return arr;
}
复制代码

根据缓存索引位置来提高排序性能,时间节约了20ms,但收益很小。小明开始和自己过不去了,在维基百科上继续查找,最后发现了一个方法:

/**
 * 在每趟排序中进行正向和反向两遍冒泡 ,
 * 一次可以得到两个最终值(最大和最小), 
 * 从而使外排序趟数大概减少了一半
 * @param {*} arr 
 * 耗时:312ms
 */
function bubbleSort3(arr) {
    let start = 0;
    let end = arr.length - 1;
  
    while (start < end) {
      let endPos = 0;
      let startPos = 0;
      for (let i = start; i < end; i++) {
        if (arr[i] > arr[i + 1]) {
            endPos = i;
            swap(arr, i, i + 1);
        }
      }
      end = endPos;
      for (let i = end; i > start; i--) {
        if (arr[i - 1] > arr[i]) {
          startPos = i;  
          swap(arr, i - 1, i);
        }
      }
      start = startPos;
    }
  
    return arr;
  }
复制代码

通过在每趟排序中进行正向和反向两遍冒泡,小明把时间又降低了38ms,不错~

《前端算法系列》如何让前端代码速度提高60倍

再次推荐大家有事多上上维基百科,总有一款适合你。 ####3.插入排序 在收入小规模胜利后,小明膨胀了,狂言要把排序时间降低到100ms一下,于是后又安利了如下算法:

/**
   * 插入排序 -- 基础版
   * @param {*} arr 
   * 耗时:897ms
   */
  function insertionSort(arr) {
    for (let i = 1, len = arr.length; i < len; i++) {
      const temp = arr[i];
      let preIndex = i - 1;
  
      while (arr[preIndex] > temp) {
        arr[preIndex + 1] = arr[preIndex];
        preIndex -= 1;
      }
      arr[preIndex + 1] = temp;
    }
  
    return arr;
  }
复制代码

897ms,小明留下了没技术的泪水。

《前端算法系列》如何让前端代码速度提高60倍

最后小明拿出了这个看家本领,查到了二分搜索,最后改造后代码入下:

/**
   * 改造二分查找,查找小于value且离value最近的值的索引
   * @param {*} arr 
   * @param {*} maxIndex 
   * @param {*} value 
   */
  function binarySearch1(arr, maxIndex, value) {
    let min = 0;
    let max = maxIndex;
    
    while (min <= max) {
      const m = Math.floor((min + max) / 2);
  
      if (arr[m] <= value) {
        min = m + 1;
      } else {
        max = m - 1;
      }
    }
  
    return min;
  }

/**
 * 使用二分法来优化插入排序
 * @param {*} arr 
 * 耗时:86ms
 */
function insertionSort1(arr) {
    for (let i = 1, len = arr.length; i < len; i++) {
        const temp = arr[i];
        const insertIndex = binarySearch1(arr, i - 1, arr[i]);

        for (let preIndex = i - 1; preIndex >= insertIndex; preIndex--) {
        arr[preIndex + 1] = arr[preIndex];
        }
        arr[insertIndex] = temp;
    }

    return arr;
}
复制代码

完美,只用了86ms!小明激动的站了起来,还拍了下桌子,全然无视观众的眼光。

《前端算法系列》如何让前端代码速度提高60倍

小明已经满足的不要不要的了,对86ms相当满意,老板也对他刮目想看。

4.希尔排序

难道就没有提升的余地了么?进过调查研究表明,是有更优的方案的:

/**
 * 希尔排序
 * 核心:通过动态定义的 gap 来排序,先排序距离较远的元素,再逐渐递进
 * @param {*} arr 
 * 耗时:15ms
 */
function shellSort(arr) {
    const len = arr.length;
    let gap = Math.floor(len / 2);
  
    while (gap > 0) {
      // gap距离
      for (let i = gap; i < len; i++) {
        const temp = arr[i];
        let preIndex = i - gap;
  
        while (arr[preIndex] > temp) {
          arr[preIndex + gap] = arr[preIndex];
          preIndex -= gap;
        }
        arr[preIndex + gap] = temp;
      }
      gap = Math.floor(gap / 2);
    }
  
    return arr;
  }
复制代码

耗时15ms,膜拜。 ####5.归并排序

/**
 * 归并排序
 * @param {*} arr 
 * 耗时 30ms
 */
function concatSort(arr) {
  const len = arr.length;

  if (len < 2) { return arr; }

  const mid = Math.floor(len / 2);
  const left = arr.slice(0, mid);
  const right = arr.slice(mid);

  return concat(concatSort(left), concatSort(right));
}

function concat(left, right) {
  const result = [];

  while (left.length > 0 && right.length > 0) {
    result.push(left[0] <= right[0] ? left.shift() : right.shift());
  }

  return result.concat(left, right);
}
复制代码

耗时30ms,也想当优秀。还有没有更快的方法呢?答案是有的,但是会涉及到比较高僧的数学知识,放弃吧,孩子。。。

《前端算法系列》如何让前端代码速度提高60倍

接下来会推出更多优秀的算法,敬请期待哦~ 最后,欢迎加入前端技术群,一起探讨前端的魅力

《前端算法系列》如何让前端代码速度提高60倍

###更多推荐


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

文明之光

文明之光

吴军 / 人民邮电出版社 / 2014-12 / 177元

吴军博士从对人类文明产生了重大影响却在过去被忽略的历史故事里,选择了有意思的几十个片段特写,以人文和科技、经济结合的视角,有机地展现了一幅人类文明发展的宏大画卷。 《文明之光》系列大致按照从地球诞生到近现代的顺序讲述了人类文明进程的各个阶段,每个章节相对独立,全景式地展现了人类文明发展历程中的多样性。《文明之光》系列首册讲述从人类文明开始到近代大航海这一历史阶段,共八个专题。第二册讲述了从近......一起来看看 《文明之光》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

随机密码生成器
随机密码生成器

多种字符组合密码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具