一些非光滑凸优化算法

栏目: 编程工具 · 发布时间: 6年前

在很多凸优化问题中会遇到目标函数非光滑的情况,例如稀疏优化中的 范数的正则项,将约束条件转化为可行集合的指示函数的无约束优化问题,目标函数为多个子目标的最大值的优化问题等.

我们将会考虑三种不同的非光滑优化算法:次梯度方法,近似点梯度方法和加速的近似点梯度方法.它们的误差和迭代次数 的关系大致上为 , .

次梯度方法可以看成是通常针对光滑函数的梯度方法的一种扩展,它通过推广梯度的概念,给出了一个和梯度方法类似的迭代格式.对于一些目标函数能够分解为一个光滑项和非光滑项的情况,近似点梯度方法通过引入近似点算子来处理非光滑项,同时对于光滑项仍然使用梯度方法,它的迭代分别两步,首先用梯度方法更新光滑项,之后再将非光滑项近似点算子作用在更新后的结果上.如果光滑项是一个强凸的函数,那么这个方法能够达到线性的收敛率.加速的近似点梯度方法是由Nesterov提出的一个方法,它能够解决和近似点梯度相同的问题,但是能够有更快的收敛速度.

为了尽量做到自包含,我们在第2节中会给出一部分后续需要的概念和命题.在第3节和第4节中我们会重点考察这三种优化算法的收敛性和收敛速度的证明,同时在第5节还会介绍针对一类目标函数可分但是约束条件不可分的优化问题的交替方向乘子法.最后在第6节和第7节中,我们在LASSO和离散最优传输问题中针对不同的方法进行测试.

这是今年数值分析的期末报告,具体内容查看附件.

一些非光滑凸优化算法 non-smooth-convex-optimization (1.0 MiB, 6 hits)


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Linux从入门到精通

Linux从入门到精通

刘忆智、等 / 清华大学出版社 / 2010-1-1 / 59.00元

linux是目前增长最迅速的操作系统。本书由浅入深、循序渐进地向读者介绍linux的基本使用和系统管理。全书内容包括linux概述、linux安装、linux基本配置、桌面环境基本操作、shell基本命令、文件和目录管理、软件包管理、磁盘管理、用户与用户组管理、进程管理、网络配置、浏览网页、收发邮件、文件传输和共享、远程登录、多媒体应用、图像浏览和处理、打印机配置、办公软件的使用、linux编程工......一起来看看 《Linux从入门到精通》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试