内容简介:推荐一份NLP学习新资料:旧金山大学自然语言处理课程,这门课程Github链接,点击阅读原文可直达:https://github.com/fastai/course-nlp
推荐一份NLP学习新资料:旧金山大学自然语言处理课程,这门课程 将于2019年夏季在旧金山大学数据科学硕士课程中讲授。该课程 采用 Python 教学,使用Jupyter Notebooks,将用到sklearn,nltk,pytorch和fastai。
Github链接,点击阅读原文可直达:
https://github.com/fastai/course-nlp
This course is being taught in the University of San Francisco's Masters of Science in Data Science program, summer 2019. The course is taught in Python with Jupyter Notebooks, using libraries such as sklearn, nltk, pytorch, and fastai.
Table of Contents
The following topics will be covered:
1. What is NLP?
-
A changing field
-
Resources
-
Tools
-
Python libraries
-
Example applications
-
Ethics issues
2. Topic Modeling with NMF and SVD
-
Stop words, stemming, & lemmatization
-
Term-document matrix
-
Topic Frequency-Inverse Document Frequency (TF-IDF)
-
Singular Value Decomposition (SVD)
-
Non-negative Matrix Factorization (NMF)
-
Truncated SVD, Randomized SVD
3. Sentiment classification with Naive Bayes, Logistic regression, and ngrams
-
Sparse matrix storage
-
Counters
-
the fastai library
-
Naive Bayes
-
Logistic regression
-
Ngrams
-
Logistic regression with Naive Bayes features, with trigrams
4. Regex (and re-visiting tokenization)
5. Language modeling & sentiment classification with deep learning
-
Language model
-
Transfer learning
-
Sentiment classification
6. Translation with RNNs
-
Review Embeddings
-
Bleu metric
-
Teacher Forcing
-
Bidirectional
-
Attention
7. Translation with the Transformer architecture
-
Transformer Model
-
Multi-head attention
-
Masking
-
Label smoothing
8. Bias & ethics in NLP
-
bias in word embeddings
-
types of bias
-
attention economy
-
drowning in fraudulent/fake info
Why is this course taught in a weird order?
This course is structured with a top-down teaching method, which is different from how most math courses operate. Typically, in a bottom-up approach, you first learn all the separate components you will be using, and then you gradually build them up into more complex structures. The problems with this are that students often lose motivation, don't have a sense of the "big picture", and don't know what they'll need.
Harvard Professor David Perkins has a book, Making Learning Whole in which he uses baseball as an analogy. We don't require kids to memorize all the rules of baseball and understand all the technical details before we let them play the game. Rather, they start playing with a just general sense of it, and then gradually learn more rules/details as time goes on.
If you took the fast.ai deep learning course, that is what we used. You can hear more about my teaching philosophy in this blog post or this talk I gave at the San Francisco Machine Learning meetup.
All that to say, don't worry if you don't understand everything at first! You're not supposed to. We will start using some "black boxes" and then we'll dig into the lower level details later.
To start, focus on what things DO, not what they ARE.
以上所述就是小编给大家介绍的《NLP学习新资料:旧金山大学2019夏季自然语言处理课程》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。