百万 Go TCP 连接的思考: epoll方式减少资源占用

栏目: 后端 · 发布时间: 5年前

内容简介:前几天 Eran Yanay 在 Gophercon Israel 分享了一个讲座:第一篇第二篇

前几天 Eran Yanay 在 Gophercon Israel 分享了一个讲座: Going Infinite, handling 1M websockets connections in Go , 介绍了使用 Go 实现支持百万连接的websocket服务器,引起了很大的反响。事实上,相关的技术在2017年的一篇技术中已经介绍:  A Million WebSockets and Go , 这篇2017年文章的作者Sergey Kamardin也就是 Eran Yanay 项目中使用的ws库的作者。

第一篇 百万 Go TCP 连接的思考: epoll方式减少资源占用

第二篇  百万 Go TCP 连接的思考2: 百万连接的吞吐率和延迟

第三篇  百万 Go TCP 连接的思考: 正常连接下的吞吐率和延迟

相关代码已发布到github上: 1m-go-tcp-server

Sergey Kamardin 在 A Million WebSockets and Go 一文中介绍了epoll的使用( mailru/easygo ,支持epoll on linux, kqueue onbsd, darwin), ws的zero copy的upgrade等技术。

Eran Yanay的分享中对epoll的处理做了简化,而且提供了 docker 测试的脚本,很方便的在单机上进行百万连接的测试。

2015年的时候我也曾作为百万连接的websocket的服务器的比较: 使用四种框架分别实现百万websocket常连接的服务器 七种WebSocket框架的性能比较 。应该说,只要服务器硬件资源足够(内存和CPU), 实现百万连接的服务器并不是很难的事情,

操作系统会为每一个连接分配一定的内存空间外(主要是内部网络数据结构sk_buff的大小、连接的读写缓存, sof ),虽然这些可以进行调优,但是如果想使用正常的操作系统的TCP/IP栈的话,这些是硬性的需求。刨去这些,不同的编程语言不同的框架的设计,甚至是不同的需求场景,都会极大的影响TCP服务器内存的占用和处理。

一般Go语言的TCP(和HTTP)的处理都是每一个连接启动一个goroutine去处理,因为我们被教导goroutine的不像thread, 它是很便宜的,可以在服务器上启动成千上万的goroutine。但是对于一百万的连接,这种 goroutine-per-connection 的模式就至少要启动一百万个goroutine,这对资源的消耗也是极大的。针对不同的操作系统和不同的Go版本,一个goroutine锁使用的最小的栈大小是2KB ~ 8 KB ( go stack ),如果在每个goroutine中在分配byte buffer用以从连接中读写数据,几十G的内存轻轻松松就分配出去了。

所以Eran Yanay使用epoll的方式代替 goroutine-per-connection 的模式,使用一个goroutine代码一百万的goroutine, 另外使用ws减少buffer的分配,极大的减少了内存的占用,这也是大家热议的一个话题。

当然诚如作者所言,他并不是要提供一个更好的优化的websocket框架,而是演示了采用一些技术进行的优化,通过阅读他的slide和代码,我们至少有以下疑问?

  • 虽然支持百万连接,但是并发的吞吐率和延迟是怎样的?
  • 服务器实现的是单goroutine的处理,如果业务代码耗时较长会怎么样
  • 主要适合什么场景?

吞吐率和延迟需要数据来支撑,但是显然这个单goroutine处理的模式不适合耗时较长的业务处理,"hello world"或者直接的简单的memory操作应该没有问题。对于百万连接但是并发量很小的场景,比如消息推送、页游等场景,这种实现应该是没有问题的。但是对于并发量很大,延迟要求比较低的场景,这种实现可能会存在问题。

这篇文章和后续的两篇文章,将测试巨量连接/高并发/低延迟场景的几种服务器模式的性能,通过比较相应的连接、吞吐率、延迟,给读者一个有价值的选型参考。

作为一个更通用的测试,我们实现的是TCP服务器,而不是websocket服务器。

在实现一个TCP服务器的时候,首先你要问自己,到底你需要的是哪一个类型的服务器?

百万 Go TCP 连接的思考: epoll方式减少资源占用 百万 Go TCP 连接的思考: epoll方式减少资源占用 百万 Go TCP 连接的思考: epoll方式减少资源占用

当然你可能会回答,我都想要啊。但是对于一个单机服务器,资源是有限的,鱼与熊掌不可兼得,我们只能尽力挖掘单个服务器的能力,有些情况下必须通过堆服务器的方式解决,尤其在双十一、春节等时候,很大程度上都是通过扩容来解决的,这是因为单个服务器确确实实能力有限。

尽管单个服务器能力有限,不同的设计取得的性能也是不一样的,这个系列的文章测试不同的场景、不同的设计对性能的影响以及总结,主要包括:

  • 百万连接情况下的goroutine-per-connection模式服务器的资源占用
  • 百万连接情况下的epoller模式服务器的资源占用
  • 百万连接情况下epoller模式服务器的吞吐率和延迟
  • 客户端为单goroutine和多goroutine情况下epoller方式测试
  • 服务器为多epoller情况下的吞吐率和延迟 (百万连接)
  • prefork模式的epoller服务器 (百万连接)
  • Reactor模式的epoller服务器 (百万连接)
  • 正常连接下高吞吐服务器的性能(连接数<=5000)
  • I/O密集型epoll服务器
  • I/O密集型goroutine-per-connection服务器
  • CPU密集型epoll服务器
  • CPU密集型goroutine-per-connection服务器

零、 测试环境的搭建

我们在同一台机器上测试服务器和客户端。首先就是服务器参数的设置,主要是可以打开的文件数量。

file-max 是设置系统所有进程一共可以打开的文件数量。同时程序也可以通过setrlimit调用设置每个进程的限制。

echo 2000500 > /proc/sys/fs/file-max 或者  sysctl -w "fs.file-max=2000500" 可以实时更改这个参数,但是重启之后会恢复为默认值。

也可以修改 /etc/sysctl.conf , 加入 fs.file-max = 2000500 重启或者 sysctl -w 生效。

设置资源限制。首先修改 /proc/sys/fs/nr_open ,然后再用 ulimit 进行修改:

echo 2000500 > /proc/sys/fs/nr_open
ulimit -n 2000500

ulimit 设置当前 shell 以及由它启动的进程的资源限制,所以你如果打开多个shell窗口,应该都要进行设置。

当然如果你想重启以后也会使用这些参数,你需要修改 /etc/sysctl.conf 中的 fs.nr_open 参数和 /etc/security/limits.conf 的参数:

# vi /etc/security/limits.conf
* soft nofile 2000500 
* hard nofile 2000500

如果你开启了iptables,iptalbes会使用nf_conntrack模块跟踪连接,而这个连接跟踪的数量是有最大值的,当跟踪的连接超过这个最大值,就会导致连接失败。 通过命令查看

# wc -l /proc/net/nf_conntrack
  1024000

查看最大值

# cat /proc/sys/net/nf_conntrack_max
 1024000

可以通过修改这个最大值来解决这个问题

在/etc/sysctl.conf添加内核参数 net.nf_conntrack_max = 2000500

对于我们的测试来说,为了我们的测试方便,可能需要一些网络协议栈的调优,可以根据个人的情况进行设置。

sysctl -w fs.file-max=2000500
sysctl -w fs.nr_open=2000500
sysctl -w net.nf_conntrack_max=2000500
ulimit -n 2000500
sysctl -w net.ipv4.tcp_mem='131072  262144  524288'
sysctl -w net.ipv4.tcp_rmem='8760  256960  4088000'
sysctl -w net.ipv4.tcp_wmem='8760  256960  4088000'
sysctl -w net.core.rmem_max=16384
sysctl -w net.core.wmem_max=16384
sysctl -w net.core.somaxconn=2048
sysctl -w net.ipv4.tcp_max_syn_backlog=2048
sysctl -w /proc/sys/net/core/netdev_max_backlog=2048
sysctl -w net.ipv4.tcp_tw_recycle=1
sysctl -w net.ipv4.tcp_tw_reuse=1

另外,我的测试环境是是两颗 E5-2630 V4的CPU, 一共20个核,打开超线程40个逻辑核, 内存32G。

一、 简单的支持百万连接的TCP服务器

1.服务器

首先我们实现一个百万连接的服务器,采用每个连接一个goroutine的模式( goroutine-per-conn )。

server.go

func main() {
	ln, err := net.Listen("tcp", ":8972")
	if err != nil {
		panic(err)
	}
	go func() {
		if err := http.ListenAndServe(":6060", nil); err != nil {
			log.Fatalf("pprof failed: %v", err)
		}
	}()
	var connections []net.Conn
	defer func() {
		for _, conn := range connections {
			conn.Close()
		}
	}()
	for {
		conn, e := ln.Accept()
		if e != nil {
			if ne, ok := e.(net.Error); ok && ne.Temporary() {
				log.Printf("accept temp err: %v", ne)
				continue
			}
			log.Printf("accept err: %v", e)
			return
		}
		go handleConn(conn)
		connections = append(connections, conn)
		if len(connections)%100 == 0 {
			log.Printf("total number of connections: %v", len(connections))
		}
	}
}
func handleConn(conn net.Conn) {
	io.Copy(ioutil.Discard, conn)
}

编译 go build -o server server.go ,然后运行 ./server

2.客户端

客户端建立好连接后,不断的轮询每个连接,发送一个简单的 hello world\n 的消息

client.go

var (
	ip          = flag.String("ip", "127.0.0.1", "server IP")
	connections = flag.Int("conn", 1, "number of tcp connections")
)
func main() {
	flag.Parse()
	addr := *ip + ":8972"
	log.Printf("连接到 %s", addr)
	var conns []net.Conn
	for i := 0; i < *connections; i++ {
		c, err := net.DialTimeout("tcp", addr, 10*time.Second)
		if err != nil {
			fmt.Println("failed to connect", i, err)
			i--
			continue
		}
		conns = append(conns, c)
		time.Sleep(time.Millisecond)
	}
	defer func() {
		for _, c := range conns {
			c.Close()
		}
	}()
	log.Printf("完成初始化 %d 连接", len(conns))
	tts := time.Second
	if *connections > 100 {
		tts = time.Millisecond * 5
	}
	for {
		for i := 0; i < len(conns); i++ {
			time.Sleep(tts)
			conn := conns[i]
			conn.Write([]byte("hello world\r\n"))
		}
	}
}

因为从一个IP连接到同一个服务器的某个端口最多也只能建立65535个连接,所以直接运行客户端没办法建立百万的连接。 Eran Yanay采用docker的方法确实让人眼前一亮(我以前都是通过手工设置多个ip的方式实现,采用docker的方式更简单)。

我们使用50个docker容器做客户端,每个建立2万个连接,总共建立一百万的连接。

./setup.sh 20000 50 172.17.0.1

setup.sh 内容如下,使用几M大小的 alpine docker镜像跑测试:

#!/bin/bash address, 缺省是 172.17.0.1
CONNECTIONS=$1
REPLICAS=$2
IP=$3
#go build --tags "static netgo" -o client client.go
for (( c=0; c<${REPLICAS}; c++ ))
do
    docker run -v $(pwd)/client:/client --name 1mclient_$c -d alpine /client \
    -conn=${CONNECTIONS} -ip=${IP}
done

3.数据分析

使用以下 工具 查看性能:

  • dstat:查看机器的资源占用(cpu, memory,中断数和上下文切换次数)
  • ss:查看网络连接情况
  • pprof:查看服务器的性能
  • report.sh: 后续通过脚本查看延迟

百万 Go TCP 连接的思考: epoll方式减少资源占用 没连接前的服务器

百万 Go TCP 连接的思考: epoll方式减少资源占用 建立百万连接后的服务器

可以看到建立连接后大约占了19G的内存,CPU占用非常小,网络传输1.4MB左右的样子。

二、 服务器epoll方式实现

和Eran Yanay最初指出的一样,上述方案使用了上百万的goroutine,耗费了太多了内存资源和调度,改为epoll模式,大大降低了内存的使用。Eran Yanay的epoll实现只针对 Linux 的epoll而实现,比mailru的easygo实现和使用起来要简单,我们采用他的这种实现方式。

Go的net方式在Linux也是通过epoll方式实现的,为什么我们还要再使用epoll方式进行封装呢?原因在于Go将epoll方式封装再内部,对外并没有直接提供epoll的方式来使用。好处是降低的开发的难度,保持了Go类似"同步"读写的便利型,但是对于需要大量的连接的情况,我们采用这种每个连接一个goroutine的方式占用资源太多了,所以这一节介绍的就是hack连接的文件描述符,采用epoll的方式自己管理读写。

1.服务器

服务器需要改造一下:

server.go

var epoller *epoll
func main() {
	setLimit()
	ln, err := net.Listen("tcp", ":8972")
	if err != nil {
		panic(err)
	}
	go func() {
		if err := http.ListenAndServe(":6060", nil); err != nil {
			log.Fatalf("pprof failed: %v", err)
		}
	}()
	epoller, err = MkEpoll()
	if err != nil {
		panic(err)
	}
	go start()
	for {
		conn, e := ln.Accept()
		if e != nil {
			if ne, ok := e.(net.Error); ok && ne.Temporary() {
				log.Printf("accept temp err: %v", ne)
				continue
			}
			log.Printf("accept err: %v", e)
			return
		}
		if err := epoller.Add(conn); err != nil {
			log.Printf("failed to add connection %v", err)
			conn.Close()
		}
	}
}
func start() {
	var buf = make([]byte, 8)
	for {
		connections, err := epoller.Wait()
		if err != nil {
			log.Printf("failed to epoll wait %v", err)
			continue
		}
		for _, conn := range connections {
			if conn == nil {
				break
			}
			if _, err := conn.Read(buf); err != nil {
				if err := epoller.Remove(conn); err != nil {
					log.Printf("failed to remove %v", err)
				}
				conn.Close()
			}
		}
	}
}

listener 还是保持原来的样子, Accept 一个新的客户端请求后,就把它加入到epoll的管理中。单独起 一个 gorouting监听数据到来的事件,每次只最多读取100个事件。

epoll的实现如下:

type epoll struct {
	fd          int
	connections map[int]net.Conn
	lock        *sync.RWMutex
}
func MkEpoll() (*epoll, error) {
	fd, err := unix.EpollCreate1(0)
	if err != nil {
		return nil, err
	}
	return &epoll{
		fd:          fd,
		lock:        &sync.RWMutex{},
		connections: make(map[int]net.Conn),
	}, nil
}
func (e *epoll) Add(conn net.Conn) error {
	// Extract file descriptor associated with the connection
	fd := socketFD(conn)
	err := unix.EpollCtl(e.fd, syscall.EPOLL_CTL_ADD, fd, &unix.EpollEvent{Events: unix.POLLIN | unix.POLLHUP, Fd: int32(fd)})
	if err != nil {
		return err
	}
	e.lock.Lock()
	defer e.lock.Unlock()
	e.connections[fd] = conn
	if len(e.connections)%100 == 0 {
		log.Printf("total number of connections: %v", len(e.connections))
	}
	return nil
}
func (e *epoll) Remove(conn net.Conn) error {
	fd := socketFD(conn)
	err := unix.EpollCtl(e.fd, syscall.EPOLL_CTL_DEL, fd, nil)
	if err != nil {
		return err
	}
	e.lock.Lock()
	defer e.lock.Unlock()
	delete(e.connections, fd)
	if len(e.connections)%100 == 0 {
		log.Printf("total number of connections: %v", len(e.connections))
	}
	return nil
}
func (e *epoll) Wait() ([]net.Conn, error) {
	events := make([]unix.EpollEvent, 100)
	n, err := unix.EpollWait(e.fd, events, 100)
	if err != nil {
		return nil, err
	}
	e.lock.RLock()
	defer e.lock.RUnlock()
	var connections []net.Conn
	for i := 0; i < n; i++ {
		conn := e.connections[int(events[i].Fd)]
		connections = append(connections, conn)
	}
	return connections, nil
}
func socketFD(conn net.Conn) int {
	//tls := reflect.TypeOf(conn.UnderlyingConn()) == reflect.TypeOf(&tls.Conn{})
	// Extract the file descriptor associated with the connection
	//connVal := reflect.Indirect(reflect.ValueOf(conn)).FieldByName("conn").Elem()
	tcpConn := reflect.Indirect(reflect.ValueOf(conn)).FieldByName("conn")
	//if tls {
	//	tcpConn = reflect.Indirect(tcpConn.Elem())
	//}
	fdVal := tcpConn.FieldByName("fd")
	pfdVal := reflect.Indirect(fdVal).FieldByName("pfd")
	return int(pfdVal.FieldByName("Sysfd").Int())
}

2.客户端

还是运行上面的客户端,因为刚才已经建立了50个客户端的容器,我们需要先把他们删除:

docker rm -vf  $(docker ps -a --format '{ {.ID} } { {.Names} }'|grep '1mclient_' |awk '{print $1}')

然后再启动50个客户端,每个客户端2万个连接进行进行测试

./setup.sh 20000 50 172.17.0.1

3.数据分析

使用以下工具查看性能:

  • dstat:查看机器的资源占用(cpu, memory,中断数和上下文切换次数)
  • ss:查看网络连接情况
  • pprof:查看服务器的性能
  • report.sh: 后续通过脚本查看延迟

百万 Go TCP 连接的思考: epoll方式减少资源占用 没连接前的服务器

百万 Go TCP 连接的思考: epoll方式减少资源占用 建立百万连接后的服务器

可以看到建立连接后大约占了10G的内存,CPU占用非常小。

有一个专门使用epoll实现的网络库 tidwall/evio ,可以专门开发epoll方式的网络程序。去年阿里中间件大赛,美团的王亚普使用evio库杀入到排行榜第五名,也是前五中唯一一个使用Go实现的代码,其它使用Go标准库实现的代码并没有达到6983 tps/s 的程序,这也说明了再一些场景下采用epoll方式也能带来性能的提升。( 天池中间件大赛Golang版Service Mesh思路分享

但是也正如evio作者所说,evio并不能提到Go标准net库,它只使用特定的场景, 实现redis/haproxy等proxy。因为它是单goroutine处理处理的,或者你可以实现多goroutine的event-loop,但是针对一些I/O或者计算耗时的场景,未必能展现出它的优势出来。

我们知道 Redis 的实现是单线程的,正如作者 Clarifications about Redis and Memcached 介绍的,Redis主要是内存中的数据操作,单线程根本不是瓶颈(持久化是独立线程)我们后续的测试也会印证这一点。所以epoll I/O dispatcher之后是采用单线程还是Reactor模式(多线程事件处理)还是看具体的业务。

下一篇文章我们会继续测试百万连接情况下的吞吐率和延迟,这是上面的两篇文章所没有提到的。

参考

  1. https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-million-concurrent-connections-how-migratorydata-did-it/
  2. https://stackoverflow.com/questions/22090229/how-did-whatsapp-achieve-2-million-connections-per-server
  3. https://github.com/eranyanay/1m-go-websockets
  4. https://medium.freecodecamp.org/million-websockets-and-go-cc58418460bb

转自 https://colobu.com/2019/02/23/1m-go-tcp-connection/


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java Web高级编程

Java Web高级编程

威廉斯 (Nicholas S.Williams) / 王肖锋 / 清华大学出版社 / 2015-6-1 / CNY 99.80

Java成为世界上编程语言之一是有其优势的。熟悉JavaSE的程序员可以轻松地进入到Java EE开发中,构建出安全、可靠和具有扩展性的企业级应用程序。编写《Java Web高级编程——涵盖WebSockets、Spring Framework、JPA Hibernate和 Spring Security》一书的目的正是如此。 《Java Web高级编程:涵盖WebSockets、Sp......一起来看看 《Java Web高级编程》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

随机密码生成器
随机密码生成器

多种字符组合密码