利用spark进行机器学习时模型序列化存储到hive解决方案

栏目: 服务器 · 发布时间: 6年前

内容简介:机器学习模型的训练和预测经常是在不同的时间点进行,在工程实现中,一般训练和预测都是在不同的子工程里面进行,训练子工程训练模型后存储到hive,之后预测子工程项目再将模型重hive中load出来进行预测1.模型存储到hive存储很简单,将要存储的模型调用如下spark的序列化方法def serialize(spark: SparkSession)序列化后再转换拼装成sql,然后执行 spark.sql(insertSQL)即可,如下

机器学习模型的训练和预测经常是在不同的时间点进行,在工程实现中,一般训练和预测都是在不同的子工程里面进行,训练子工程训练模型后存储到hive,之后预测子工程项目再将模型重hive中load出来进行预测

1.模型存储到hive

存储很简单,将要存储的模型调用如下spark的序列化方法def serialize(spark: SparkSession)序列化后再转换拼装成sql,然后执行 spark.sql(insertSQL)即可,如下

case class ModleToHive(modelBizType: String,
                        data: String)


    def save(modelUID: String): Unit = {
    val instance = ModleToHive(
      modelUID,
      modelBizType,
      model.serialize(spark)
      ) 

    val instDf = Seq(instance).toDF()
    instDf.createOrReplaceTempView("model")

    var sqlString = s"insert into modelTable select modelUID as modelUID, modelBizType as modelBizType, data as saved_model"
    sqlString = sqlString + " from model "
    spark.sql(sqlString).collect()

这样模型就存储到hive了

2.从hive仓库load模型并反序列化

val sqlString = s"select saved_model from modelTable where modelUID=modelUID "
    val modelHexBinary = spark.sql(sqlString).first() 
    val ser = new KryoSerializer(sparkConf).newInstance()
    val byteBuffer = ByteBuffer.wrap(DatatypeConverter.parseHexBinary(modelHexBinary.getString(0)))
    ser.deserialize[T](byteBuffer)

这样模型就又反序列化出来了,可用于预测了


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法交易:制胜策略与原理

算法交易:制胜策略与原理

[美]欧内斯特·陈(Ernest P. Chan) / 高闻酉、黄蕊 / 机械工业出版社 / 49.00

本书是一本引人入胜、信息量大、覆盖各类交易策略的图书。无论个人投资者,还是机构投资者,都可以借鉴和使用其中的策略。本书中的策略大致可分为均值回归系统和动量系统两大类。书中不仅介绍了如何使用每种类别的交易策略,更解释了各种策略之所以有效的原因。本书始终以简单、线性的交易策略为重心,因为复杂的交易策略容易受到过度拟合及数据窥探的侵害。数学和软件是算法交易的两条腿。本书用到了一定程度的数学知识,使其对各......一起来看看 《算法交易:制胜策略与原理》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换